Multidrug-resistant Streptococcus pneumoniae strains have emerged over the past decade at an alarming rate. The molecular mechanism of trimethoprim resistance was investigated in 5 pneumococcal strains isolated in the Washington, DC, area from patients with invasive infections. Cloning and sequencing of the trimethoprim resistance determinant from these pneumococci indicated that an altered chromosome-encoded dihydrofolate reductase (DHFR) was responsible for the observed resistance. Comparison of DHFR sequences from pneumococcal strains with various susceptibilities to trimethoprim, together with site-directed mutagenesis, revealed that substitution of isoleucine-100 with a leucine residue resulted in trimethoprim resistance. Hydrogen bonding between the carbonyl oxygen of isoleucine-100 and the 4-amino group of trimethoprim is proposed to play a critical role in the inhibition of DHFR by trimethoprim. This enzyme-substrate model should facilitate the design of new antibacterial agents with improved activity against S. pneumoniae.
Oral surfaces are bathed in secretory antibodies and other salivary macromolecules that are potential inhibitors of specific microbial adhesion. Indigenous Gram-positive bacteria that colonize teeth, including viridans streptococci and actinomyces, may avoid inhibition of adhesion by host secretory molecules through various strategies that involve the structural design and binding properties of bacterial adhesins and receptors. Further studies to define the interactions of these molecules within the host environment may suggest novel approaches for the control of oral biofilm formation.
The nucleotide sequence of the Actinomyces naeslundiiT14V type 2 fimbrial structural subunit gene, fimA, and the 3′ flanking DNA region was determined. The fimA gene encoded a 535-amino-acid precursor subunit protein (FimA) which included both N-terminal leader and C-terminal cell wall sorting sequences. A second gene, designated orf365, that encoded a 365-amino-acid protein which contained a putative transmembrane segment was identified immediately 3′ to fimA. Mutants in which either fimA or orf365 was replaced with a kanamycin resistance gene did not participate in type 2 fimbriae-mediated coaggregation with Streptococcus oralis34. Type 2 fimbrial antigen was not detected in cell extracts of thefimA mutant by Western blotting with anti-A. naeslundii type 2 fimbrial antibody, but the subunit protein was detected in extracts of the orf365 mutant. The subunit protein detected in this mutant also was immunostained by an antibody raised against a synthetic peptide representing the C-terminal 20 amino acid residues of the predicted FimA. The antipeptide antibody reacted with FimA isolated from the recombinant Escherichia coliclone containing fimA but did not react with purified type 2 fimbriae in extracts of the wild-type strain. These results indicate that synthesis of type 2 fimbriae in A. naeslundii T14V may involve posttranslational cleavage of both the N-terminal and C-terminal peptides of the precursor subunit and also the expression oforf365.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.