A laser-driven fiber optic gyroscope (FOG) is demonstrated with an angular random walk noise of 5.5×10-4 deg/√h, a drift of 6.8×10-3 deg/h, and an inferred scale-factor stability of 0.15 ppm, making it, to the best of our knowledge, the first laser-driven FOG to satisfy the performance requirements for inertial navigation of commercial aircraft. This is achieved using Gaussian white noise phase modulation to broaden the linewidth of the source laser and to strongly suppress the narrow-linewidth optical carrier. The performance of this laser-driven FOG is shown to have better noise and only slightly higher drift than the same FOG driven by a conventional superfluorescent fiber source. This result is validated for two lasers with widely different intrinsic coherence.
This paper reports a comprehensive model of the noise and drift induced by polarization coupling in a fiber optic gyroscope (FOG) interrogated with a laser of arbitrary linewidth. It includes the effects of dynamic phase biasing, a realistic description of laser phase noise, and polarization-dependent loss. This model yields concise analytical expressions for the noise and drift dependencies on the laser linewidth, the fiber length and holding parameter h, and the fractional power launched into the unwanted polarization at the input to the sensing coil. For all realistic FOG parameter sets the polarization-coupling noise is found to be insignificant. For a 1-km coil, a typical holding parameter (h = 10 -5 ), and push-pull modulation, the drift is only ~1 µrad up to a linewidth of ~100 MHz, which is far lower than previously believed. The drift decreases to even lower values for larger linewidths. Experimental measurements of the noise and drift in a 150-m FOG and their dependence on laser linewidth support these predictions. Birefringence modulation can be brought to bear to reduce this residual drift enough to meet the requirement for aircraft inertial navigation. Ultimately, this analysis shows that low polarization coupling error can be obtained without the use of a broadband source.Index Terms-Fiber optic gyroscope, laser phase noise, optical polarization, polarization nonreciprocity error, Sagnac interferometer 0733-8724 (c)
Low noise and drift in a laser-driven fiber optic gyroscope (FOG) are demonstrated by interrogating the sensor with a low-coherence laser. The laser coherence was reduced by broadening its optical spectrum using an external electro-optic phase modulator driven by either a sinusoidal or a pseudo-random bit sequence (PRBS) waveform. The noise reduction measured in a FOG driven by a modulated laser agrees with the calculations based on the broadened laser spectrum. Using PRBS modulation, the linewidth of a laser was broadened from 10 MHz to more than 10 GHz, leading to a measured FOG noise of only 0.00073 deg/√h and a drift of 0.023 deg/h. To the best of our knowledge, these are the lowest noise and drift reported in a laser-driven FOG, and this noise is below the requirement for the inertial navigation of aircraft.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.