Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency, and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
Soluble adenylyl cyclase (sAC) has
gained attention as a potential
therapeutic target given the role of this enzyme in intracellular
signaling. We describe successful efforts to design improved sAC inhibitors
amenable for in vivo interrogation of sAC inhibition
to assess its potential therapeutic applications. This work culminated
in the identification of TDI-10229 (12), which displays
nanomolar inhibition of sAC in both biochemical and cellular assays
and exhibits mouse pharmacokinetic properties sufficient to warrant
its use as an in vivo tool compound.
Soluble adenylyl cyclase (sAC: ADCY10) is essential for activating dormant sperm. Studies of freshly dissected mouse sperm identified sAC as needed for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in human sperm. Unlike dissected mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. Even in ejaculated human sperm, TDI-10229 interrupts stimulated motility and capacitation, and it prevents acrosome reaction in capacitated sperm. At present, there are no non-hormonal, pharmacological methods for contraception. Because sAC activity is required post-ejaculation at multiple points during the sperm journey to fertilize the oocyte, sAC inhibitors define candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in females.
Nearly half of all pregnancies are unintended; thus, existing family planning options are inadequate. For men, the only choices are condoms and vasectomy, and most current efforts to develop new contraceptives for men impact sperm development, meaning that contraception requires months of continuous pretreatment. Here, we provide proof-of-concept for an innovative strategy for on-demand contraception, where a man would take a birth control pill shortly before sex, only as needed. Soluble adenylyl cyclase (sAC) is essential for sperm motility and maturation. We show a single dose of a safe, acutely-acting sAC inhibitor with long residence time renders male mice temporarily infertile. Mice exhibit normal mating behavior, and full fertility returns the next day. These studies define sAC inhibitors as leads for on-demand contraceptives for men, and they provide in vivo proof-of-concept for previously untested paradigms in contraception; on-demand contraception after just a single dose and pharmacological contraception for men.
In humans, the prototypical second messenger cyclic AMP is produced by 10 adenylyl cyclase isoforms, which are divided into two classes. Nine isoforms are G protein coupled transmembrane adenylyl cyclases (tmACs; ADCY1-9) and the 10th is the bicarbonate regulated soluble adenylyl cyclase (sAC; ADCY10). This review details why sAC is uniquely druggable and outlines ways to target sAC for novel forms of male and female contraception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.