Monoacylglycerol lipase (MAGL) is a major serine hydrolase that hydrolyzes 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain. Because 2-AG and AA are endogenous biologically active ligands in the brain, inhibition of MAGL is an attractive therapeutic target for CNS disorders, particularly neurodegenerative diseases. In this study, we report the structure-based drug design of novel piperazinyl pyrrolidin-2-ones starting from our hit compounds 2a and 2b. By enhancing the interaction of the piperazinyl pyrrolidin-2-one core and its substituents with the MAGL enzyme via design modifications, we identified a potent and reversible MAGL inhibitor, compound (R)-3t. Oral administration of compound (R)-3t to mice decreased AA levels and elevated 2-AG levels in the brain.
We report here the catalytic and highly enantioselective [2 + 4] and [2 + 2] cycloaddition reactions of electron-rich dienes or silyl enol ethers with electron-deficient propiolamide derivatives induced by copper(II).3-(2-naphthyl)-L-alanine amide complex.
Soluble adenylyl cyclase (sAC: ADCY10) has been genetically confirmed to be essential for male fertility in mice and humans. In mice, ex vivo studies of dormant, caudal epididymal sperm demonstrated that sAC is required for initiating capacitation and activating motility. We now use an improved sAC inhibitor, TDI-10229, for a comprehensive analysis of sAC function in mouse and human sperm. In contrast to caudal epididymal mouse sperm, human sperm are collected post-ejaculation, after sAC activity has already been stimulated. In addition to preventing the capacitation-induced stimulation of sAC and protein kinase A activities, tyrosine phosphorylation, alkalinization, beat frequency, and acrosome reaction in dormant mouse sperm, sAC inhibitors interrupt each of these capacitation-induced changes in ejaculated human sperm. Furthermore, we show for the first time that sAC is required during acrosomal exocytosis in mouse and human sperm. These data define sAC inhibitors as candidates for non-hormonal, on-demand contraceptives suitable for delivery via intravaginal devices in women.
A novel series of pyridazinone-based phosphodiesterase 10A (PDE10A) inhibitors were synthesized. Our optimization efforts using structure-based drug design (SBDD) techniques on the basis of the X-ray crystal structure of PDE10A in complex with hit compound 1 (IC50 = 23 nM; 110-fold selectivity over other PDEs) led to the identification of 1-[2-fluoro-4-(1H-pyrazol-1-yl)phenyl]-5-methoxy-3-(1-phenyl-1H-pyrazol-5-yl)pyridazin-4(1H)-one (27h). Compound 27h has potent inhibitory activity (IC50 = 0.30 nM), excellent selectivity (>15000-fold selectivity over other PDEs), and favorable pharmacokinetics, including high brain penetration, in mice. Oral administration of compound 27h to mice elevated striatal 3',5'-cyclic adenosine monophosphate (cAMP) and 3',5'-cyclic guanosine monophosphate (cGMP) levels at 0.3 mg/kg and showed potent suppression of phencyclidine (PCP)-induced hyperlocomotion at a minimum effective dose (MED) of 0.3 mg/kg. Compound 27h (TAK-063) is currently being evaluated in clinical trials for the treatment of schizophrenia.
[Structure: see text] A new Brønsted acid-assisted chiral Brønsted (chiral BBA) acid catalyst (1) was developed by substituting a hydroxy group of optically active 1,1'-bi(2-naphthol) with a stronger Brønsted acidic group such as a bis(trifluoromethanesulfonyl)methyl group. The enantioselective Mannich-type reaction of ketene silyl acetals with aldimines catalyzed by (R)-1 in the presence of stoichiometric achiral proton sources gave (S)-beta-amino esters in high yield with moderate to good enantiomeric excesses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.