Cyclic GMP-AMP synthase is essential for innate immunity against infection and cellular damage, serving as a sensor of DNA from pathogens or mislocalized self-DNA. Upon binding double-stranded DNA, cyclic GMP-AMP synthase synthesizes a cyclic dinucleotide that initiates an inflammatory cellular response. Mouse studies that recapitulate causative mutations in the autoimmune disease Aicardi-Goutières syndrome demonstrate that ablating the cyclic GMP-AMP synthase gene abolishes the deleterious phenotype. Here, we report the discovery of a class of cyclic GMP-AMP synthase inhibitors identified by a high-throughput screen. These compounds possess defined structure-activity relationships and we present crystal structures of cyclic GMP-AMP synthase, double-stranded DNA, and inhibitors within the enzymatic active site. We find that a chemically improved member, RU.521, is active and selective in cellular assays of cyclic GMP-AMP synthase-mediated signaling and reduces constitutive expression of interferon in macrophages from a mouse model of Aicardi-Goutières syndrome. RU.521 will be useful toward understanding the biological roles of cyclic GMP-AMP synthase and can serve as a molecular scaffold for development of future autoimmune therapies.
Cyclic GMP-AMP synthase (cGAS) is the primary sensor for aberrant intracellular dsDNA producing the cyclic dinucleotide cGAMP, a second messenger initiating cytokine production in subsets of myeloid lineage cell types. Therefore, inhibition of the enzyme cGAS may act anti-inflammatory. Here we report the discovery of human-cGAS-specific small-molecule inhibitors by high-throughput screening and the targeted medicinal chemistry optimization for two molecular scaffolds. Lead compounds from one scaffold co-crystallize with human cGAS and occupy the ATP- and GTP-binding active site. The specificity and potency of these drug candidates is further documented in human myeloid cells including primary macrophages. These novel cGAS inhibitors with cell-based activity will serve as probes into cGAS-dependent innate immune pathways and warrant future pharmacological studies for treatment of cGAS-dependent inflammatory diseases.
Monoacylglycerol lipase (MAGL) is a major serine hydrolase that hydrolyzes 2-arachidonoylglycerol (2-AG) to arachidonic acid (AA) and glycerol in the brain. Because 2-AG and AA are endogenous biologically active ligands in the brain, inhibition of MAGL is an attractive therapeutic target for CNS disorders, particularly neurodegenerative diseases. In this study, we report the structure-based drug design of novel piperazinyl pyrrolidin-2-ones starting from our hit compounds 2a and 2b. By enhancing the interaction of the piperazinyl pyrrolidin-2-one core and its substituents with the MAGL enzyme via design modifications, we identified a potent and reversible MAGL inhibitor, compound (R)-3t. Oral administration of compound (R)-3t to mice decreased AA levels and elevated 2-AG levels in the brain.
GPR40/FFAR1 is a
G-protein-coupled receptor expressed in pancreatic
β-cells and enteroendocrine cells. GPR40 activation stimulates
secretions of insulin and incretin, both of which are the pivotal
regulators of glycemic control. Therefore, a GPR40 agonist is an attractive
target for the treatment of type 2 diabetes mellitus. Using the reported
biaryl derivative 1, we shifted the hydrophobic moiety
to the terminal aryl ring and replaced the central aryl ring with
piperidine, generating 2-(4,4-dimethylpentyl)phenyl piperidine 4a, which had improved potency for GPR40 and high lipophilicity.
We replaced the hydrophobic moiety with N-alkyl-N-aryl benzamides to lower the lipophilicity and restrict
the N-alkyl moieties to the presumed lipophilic pocket
using the intramolecular π–π stacking of cis-preferential N-alkyl-N-aryl benzamide. Among these,
orally available (3S)-3-cyclopropyl-3-(2-((1-(2-((2,2-dimethylpropyl)(6-methylpyridin-2-yl)carbamoyl)-5-methoxyphenyl)piperidin-4-yl)methoxy)pyridin-4-yl)propanoic
acid (SCO-267) effectively stimulated insulin secretion
and GLP-1 release and ameliorated glucose tolerance in diabetic rats
via GPR40 full agonism.
The previously published version of this Article contained errors in Fig. 6. In panel h the units of the x axis were incorrectly given as mM and should have been given as µM. Also, the IC 50 s for RU.365, RU.332 and RU.521 within panel h were incorrectly given as mM and should have been given as µM. These errors have been corrected in both the PDF and HTML versions of the Article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.