A new measurement system, consisting of a mobile array of 50 microphones that form a spherical surface of radius 0.2 m, that images the acoustic intensity vector throughout a large volume is discussed. A simultaneous measurement of the pressure field across all the microphones provides time-domain holograms. Spherical harmonic expansions are used to convert the measured pressure into a volumetric vector intensity field on a grid of points ranging from the origin to a maximum radius of 0.4 m. Displays of the volumetric intensity image are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate flow-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decompositions. The frequency range of operation is 0 to 1400 Hz. This device is ideal for the diagnostic analysis of noise sources in commercial and military transportation vehicles in air, on land, and underwater.
A house on Edwards Air Force Base, CA, was exposed to low-intensity N-wave sonic booms during a 3-week test period in June 2006. The house was instrumented to measure the booms both inside and out. F-18 aircraft were flown to achieve a variety of boom overpressures from approximately 0.01 to 0.06 psf. During 4 test days, 77 test subjects heard the booms while seated inside and outside the house. Using the Magnitude Estimation methodology and artificial reference sounds, the subjects rated the annoyance of the booms. Since the same subjects heard similar booms both inside and outside the house, comparative ratings of indoor and outdoor annoyance were obtained. Preliminary results from this test will be presented.
A facility has been constructed at NASA Langley Research Center to simulate the soundscape inside residential houses that are exposed to environmental noise from aircraft. This controllable indoor listening environment, the Interior Effects Room, enables systematic study of parameters that affect psychoacoustic response. The single-room facility, built using typical residential construction methods and materials, is surrounded on adjacent sides by two arrays of loudspeakers in close proximity to the exterior walls. The arrays, containing 52 subwoofers and 52 mid-range speakers, have a usable bandwidth of 3 Hz to 5 kHz and sufficient output to allow study of sonic boom noise. In addition to these exterior arrays, satellite speakers placed inside the room are used to augment the transmitted sound with rattle and other audible contact-induced noise that can result from low frequency excitation of a residential house. The layout of the facility, operational characteristics, acoustic characteristics and equalization approaches are summarized.
Composite structures are often used in aircraft because of the advantages offered by a high strength to weight ratio. However, the acoustical properties of these light and stiff structures can often be less than desirable resulting in high aircraft interior noise levels. In this paper, measurements and predictions of the transmission loss of a curved honeycomb composite panel are presented. The transmission loss predictions are validated by comparisons to measurements. An assessment of the behavior of the panel is made from the dispersion characteristics of transverse waves propagating in the panel. The speed of transverse waves propagating in the panel is found to be sonic or supersonic over the frequency range from 100 to 5000 Hz. The acoustical benefit of reducing the wave speed for transverse vibration is demonstrated. IntroductionPanels constructed from face sheets laminated to a honeycomb core are being incorporated into the design of modern aircraft fuselage and trim treatments. The mechanical properties of these panels offer a distinct advantage in weight over other commonly used construction materials.* The strength to weight ratio of honeycomb composite panels is high in comparison to rib stiffened aluminum panels used in previous generations of aircraft. However, the high stiffness and low weight can result in supersonic wave propagation at relatively low frequencies, which adversely affects the acoustical performance at these frequencies. †Poor acoustical performance of these types of structures can increase the cabin noise levels to which the passengers and crew are exposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.