This review applies a holistic approach for recognizing a pattern in the photophysics–structure relationship of chromophore in porous crystalline matrices.
The Os(II) tris(2,2′-bipyridine) (OsBpy) complex exhibits optical properties that are particularly attractive for light harvesting systems due to the broad absorption spectrum extending throughout the solar spectrum. However, the relatively short lifetime of the triplet metal to ligand charge transfer state ( 3 MLCT) relative to the related Ru(II)tris(2,2′-bipyridine) (RuBpy) has limited applications. Here, the encapsulation of OsBpy within two distinct Zn(II)-trimesic acid MOFs, HKUST-1(Zn) and USF-2 is demonstrated in an effort to extend the 3 MLCT lifetime. Encapsulation results in a hypsochromatic shift of the steady-state emission band in both frameworks resulting from a destabilization of the 3 MLCT. The encapsulated OsBpy also exhibits extended emission lifetimes in both HKUST-1(Zn) (104 ns in MOF vs 50 ns in methanol) and USF-2 (81 ns in MOF vs 50 ns in methanol) arising from changes in the nonradiative decay constants in both systems. The data are also consistent with vibronic perturbations involved in mixing between higher energy 3 MLCT* and ligand field states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.