Fungi are traditionally considered as reservoir of biologically active natural products. However, an active secondary metabolism has long not been attributed to early diverging fungi such as Mortierella spec. Here, we report on the biosynthesis of two series of cyclic pentapeptides, the malpicyclins and malpibaldins, as products of Mortierella alpina ATCC32222. The molecular structures of malpicyclins were elucidated by HR-MS/MS, Marfey's method, and 1D and 2D NMR spectroscopy. In addition, malpibaldin biosynthesis was confirmed by HR-MS. Genome mining and comparative qRT-PCR expression analysis pointed at two pentamodular nonribosomal peptide synthetases (NRPS), malpicyclin synthetase MpcA and malpibaldin synthetase MpbA, as candidate biosynthetic enzymes. Heterologous production of the respective adenylation domains and substrate specificity assays proved promiscuous substrate selection and confirmed their respective biosynthetic roles. In stark contrast to known fungal NRPSs, MpbA and MpcA contain bacterial-like dual epimerase/condensation domains allowing the racemization of enzyme-tethered l-amino acids and the subsequent incorporation of d-amino acids into the metabolites. Phylogenetic analyses of both NRPS genes indicate a bacterial origin and a horizontal gene transfer into the fungal genome. We report on the as yet unexplored nonribosomal peptide biosynthesis in basal fungi which highlights this paraphylum as novel and underrated resource of natural products. IMPORTANCE Fungal natural compounds are industrially produced with application in antibiotic treatment, cancer medications and crop plant protection. Traditionally, higher fungi have been intensively investigated concerning their metabolic potential, but re-identification of already known compounds is frequently observed. Hence, alternative strategies to acquire novel bioactive molecules are required. We present the genus Mortierella as representative of the early diverging fungi as an underestimated resource of natural products. Mortierella alpina produces two families of cyclopeptides, denoted malpicyclins and malpibaldins, respectively, via two pentamodular nonribosomal peptide synthetases (NRPSs). These enzymes are much closer related to bacterial than to other fungal NRPSs, suggesting a bacterial origin of these NRPS genes in Mortierella. Both enzymes were biochemically characterized and are involved in as yet unknown biosynthetic pathways of natural products in basal fungi. Hence, this report establishes early diverging fungi as prolific natural compound producers and sheds light on the origin of their biosynthetic capacity.
Psilocybe magic mushrooms are best known for their main natural product, psilocybin, and its dephosphorylated congener, the psychedelic metabolite psilocin. Beyond tryptamines, the secondary metabolome of these fungi is poorly understood. The genomes of five species (P. azurescens, P. cubensis, P. cyanescens, P. mexicana, and P. serbica) were browsed to understand more profoundly common and species-specific metabolic capacities. The genomic analyses revealed a much greater and yet unexplored metabolic diversity than evident from parallel chemical analyses. P. cyanescens and P. mexicana were identified as aeruginascin producers. Lumichrome and verpacamide A were also detected as Psilocybe metabolites. The observations concerning the potential secondary metabolome of this fungal genus support pharmacological and toxicological efforts to find a rational basis for yet elusive phenomena, such as paralytic effects, attributed to consumption of some magic mushrooms.
The realm of natural products of early diverging fungi such as Mortierella species is largely unexplored. Herein, the nonribosomal peptide synthetase (NRPS) MalA catalysing the biosynthesis of the surface-active biosurfactants,...
The regulation of natural product biosyntheses in mushrooms in response to environmental cues is poorly understood. We addressed this knowledge gap and chose the cobalt crust mushroom Terana caerulea as our model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.