Fungi are traditionally considered as reservoir of biologically active natural products. However, an active secondary metabolism has long not been attributed to early diverging fungi such as Mortierella spec. Here, we report on the biosynthesis of two series of cyclic pentapeptides, the malpicyclins and malpibaldins, as products of Mortierella alpina ATCC32222. The molecular structures of malpicyclins were elucidated by HR-MS/MS, Marfey's method, and 1D and 2D NMR spectroscopy. In addition, malpibaldin biosynthesis was confirmed by HR-MS. Genome mining and comparative qRT-PCR expression analysis pointed at two pentamodular nonribosomal peptide synthetases (NRPS), malpicyclin synthetase MpcA and malpibaldin synthetase MpbA, as candidate biosynthetic enzymes. Heterologous production of the respective adenylation domains and substrate specificity assays proved promiscuous substrate selection and confirmed their respective biosynthetic roles. In stark contrast to known fungal NRPSs, MpbA and MpcA contain bacterial-like dual epimerase/condensation domains allowing the racemization of enzyme-tethered l-amino acids and the subsequent incorporation of d-amino acids into the metabolites. Phylogenetic analyses of both NRPS genes indicate a bacterial origin and a horizontal gene transfer into the fungal genome. We report on the as yet unexplored nonribosomal peptide biosynthesis in basal fungi which highlights this paraphylum as novel and underrated resource of natural products. IMPORTANCE Fungal natural compounds are industrially produced with application in antibiotic treatment, cancer medications and crop plant protection. Traditionally, higher fungi have been intensively investigated concerning their metabolic potential, but re-identification of already known compounds is frequently observed. Hence, alternative strategies to acquire novel bioactive molecules are required. We present the genus Mortierella as representative of the early diverging fungi as an underestimated resource of natural products. Mortierella alpina produces two families of cyclopeptides, denoted malpicyclins and malpibaldins, respectively, via two pentamodular nonribosomal peptide synthetases (NRPSs). These enzymes are much closer related to bacterial than to other fungal NRPSs, suggesting a bacterial origin of these NRPS genes in Mortierella. Both enzymes were biochemically characterized and are involved in as yet unknown biosynthetic pathways of natural products in basal fungi. Hence, this report establishes early diverging fungi as prolific natural compound producers and sheds light on the origin of their biosynthetic capacity.
Major advances over the past decade in the field of ancient DNA are providing access to past paleogenomic diversity, but the diverse functions and biosynthetic capabilities of this growing paleome remain largely elusive. Here, we investigated the dental calculus of 12 Neanderthals and 52 anatomically modern humans spanning 100 kya to the present and reconstructed 459 bacterial metagenome-assembled genomes (MAGs). We identified a biosynthetic gene cluster (BGC) shared by seven Middle and Upper Paleolithic individuals that allows for the heterologous production of a class of previously unknown metabolites we name paleofurans. This paleobiotechnological approach demonstrates that viable biosynthetic machinery can be produced from the preserved genetic material of ancient organisms, allowing access to natural products from the Pleistocene and providing a promising area for natural product exploration.
Fungi are traditionally considered as reservoir of biologically active natural products. However, an active secondary metabolism has long not been attributed to early diverging fungi such as Mortierella spec. Here, we report on the biosynthesis of two series of cyclic pentapeptides, the malpicyclins and malpibaldins, as products of Mortierella alpina ATCC32222. The molecular structures of malpicyclins were elucidated by HR-MS/MS, Marfey’s method, and 1D and 2D NMR spectroscopy. In addition, malpibaldin biosynthesis was confirmed by HR-MS. Genome mining and comparative qRT-PCR expression analysis pointed at two pentamodular nonribosomal peptide synthetases (NRPS), malpicyclin synthetase MpcA and malpibaldin synthetase MpbA, as candidate biosynthetic enzymes. Heterologous production of the respective adenylation domains and substrate specificity assays proved promiscuous substrate selection and confirmed their respective biosynthetic roles. In stark contrast to known fungal NRPSs, MpbA and MpcA contain bacterial-like dual epimerase/condensation domains allowing the racemization of enzyme-tethered l-amino acids and the subsequent incorporation of d-amino acids into the metabolites. Phylogenetic analyses of both NRPS genes indicate a bacterial origin and a horizontal gene transfer into the fungal genome. This is the first report of nonribosomal peptide biosynthesis in basal fungi which highlights this paraphylum as novel and underrated resource of natural products.IMPORTANCEFungal natural compounds are industrially produced with application in antibiotic treatment, cancer medications and crop plant protection. Traditionally, higher fungi have been intensively investigated concerning their metabolic potential, but re-identification of already known compounds is frequently observed. Hence, alternative strategies to acquire novel bioactive molecules are required. We present the genus Mortierella as representative of the early diverging fungi as an underestimated resource of natural products. Mortierella alpina produces two families of cyclopeptides, denoted malpicyclins and malpibaldins, respectively, via two pentamodular nonribosomal peptide synthetases (NRPSs). These enzymes are much closer related to bacterial than to other fungal NRPSs, suggesting a bacterial origin of these NRPS genes in Mortierella. Both enzymes are the first biochemically characterized natural product biosynthesis enzymes of basal fungi. Hence, this report establishes early diverging fungi as prolific natural compound producers and sheds light on the origin of their biosynthetic capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.