We describe the structure and operation of a micro/nanofluidic device in which individual metaphase chromosomes can be isolated and processed without being displaced during exchange of reagents. The change in chromosome morphology as a result of introducing protease into the device was observed by time-lapse imaging; pressure-driven flow was then used to shunt the chromosomal DNA package into a nanoslit. A long linear DNA strand (>1.3 Mbp) was seen to stretch out from the DNA package and along the length of the nanoslit. Delivery of DNA in its native metaphase chromosome package as well as the microfluidic environment prevented DNA from shearing and will be important for preparing ultra-long lengths of DNA for nanofluidic analysis.
Scanning conductance microscopy investigations were carried out in air on human chromosomes fixed on pre-fabricated SiO2 surfaces with a backgate. The point of the investigation was to estimate the dielectric constant of fixed human chromosomes in order to use it for microfluidic device optimization. The phase shift caused by the electrostatic forces, together with geometrical measurements of the atomic force microscopy (AFM) cantilever and the chromosomes were used to estimate a value for the dielectric constant of different human chromosomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.