In response to the COVID-19 pandemic, studies have shown that frequently-touched surfaces that are contaminated with SARS-CoV-2 can pose a risk to public health and safety. Considering elevators as a high-risk environment for the spread of COVID-19 and other infectious diseases via surface transmission, common methods of manually applying liquid-form disinfectants are impractical for sanitizing the elevator panel after each use. Therefore, an automated UVC light surface sanitization device with integrated sensing components to avoid UVC light-human interaction and perform frequent sanitization was developed. Algorithmically, the system uses a motion sensor, an inertial measurement unit, and a door sensor to determine when the elevator is empty, stationary, and shut. Once these conditions are met, the UVC lamp is enabled to safely sanitize the elevator control panel. The device’s UVC irradiation capabilities were tested by applying UVC light to a mock control panel. A minimum power density of 0.31 mW/cm² was detected, which can deactivate SARS-CoV-2. The sensing and control system was tested in an elevator and it was demonstrated to be able to detect operating conditions and activate the UVC light at appropriate instances. Our device operates using inexpensive hardware and it can be easily integrated into existing elevator infrastructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.