The quantum confinement and enhanced optical properties of silicon quantum dots (SiQDs) make them attractive as an inexpensive and nontoxic material for a variety of applications such as light emitting technologies (lighting, displays, sensors) and photovoltaics. However, experimental demonstration of these properties and practical application into optoelectronic devices have been limited as SiQDs are generally passivated with covalently bound insulating alkyl chains that limit charge transport. In this work, we show that strategically designed triphenylamine-based surface ligands covalently bonded to the SiQD surface using conjugated vinyl connectivity results in a 70 nm red-shifted photoluminescence relative to their decyl-capped control counterparts. This suggests that electron density from the SiQD is delocalized into the surface ligands to effectively create a larger hybrid QD with possible macroscopic charge transport properties.
N-Bromosuccinimide based bromination is proven to be an effective and mild intermediate step to produce surface functionalized, red-emitting, colloidal SiQDs.
We have developed a novel single-step technique based on nonthermal, radio frequency (rf) plasmas to synthesize sub-10 nm, core-shell, carbon-coated crystalline Si (c-Si) nanoparticles (NPs) for potential application in Li(+) batteries and as fluorescent markers. Hydrogen-terminated c-Si NPs nucleate and grow in a SiH4-containing, low-temperature plasma in the upstream section of a tubular quartz reactor. The c-Si NPs are then transported downstream by gas flow, and are coated with amorphous carbon (a-C) in a second C2H2-containing plasma. X-ray diffraction (XRD), X-ray photoelectron spectroscopy, and in situ attenuated total reflection Fourier transform infrared spectroscopy show that a thin, < 1 nm, 3C-SiC layer forms at the c-Si/a-C interface. By varying the downstream C2H2 plasma rf power, we can alter the nature of the a-C coating as well as the thickness of the interfacial 3C-SiC layer. The transmission electron microscopy (TEM) analysis is in agreement with the Si NP core size determined by Raman spectroscopy, photoluminescence spectroscopy, and XRD analysis. The size of the c-Si NP core, and the corresponding light emission from these NPs, was directly controlled by varying the thickness of the interfacial 3C-SiC layer. This size tunable emission thus also demonstrates the versatility of this technique for synthesizing c-Si NPs for potential applications in light emitting diodes, biological markers, and nanocrystal inks.
Silicon nanoparticles (Si NPs) were synthesized by plasma enhanced chemical vapor deposition (PECVD) using silane as a silicon source. Allylamine was used as passivation ligands to form water-soluble Si NPs. Finally, aqueous asymmetric flow field-flow fractionation was used to successfully separate the polydisperse Si NPs into monodisperse Si NP fractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.