Fault injection simulation on embedded software is typically captured using a high-level fault model that expresses fault behavior in terms of programmer-observable quantities. These fault models hide the true sensitivity of the underlying processor hardware to fault injection, and they are unable to correctly capture fault effects in the programmer-invisible part of the processor microarchitecture. We present SimpliFI, a simulation methodology to test fault attacks on embedded software using a hardware simulation of the processor running the software. We explain the purpose and advantage of SimpliFI, describe automation of the simulation framework, and apply SimpliFI on a BRISC-V embedded processor running an AES application.
Advanced Encryption Standard (AES) implementations on Field Programmable Gate Arrays (FPGA) commonly focus on maximizing throughput at the cost of utilizing high volumes of FPGA slice logic. High resource usage limits systems' abilities to implement other functions (such as video processing or machine learning) that may want to share the same FPGA resources. In this paper, we address the shared resource challenge by proposing and evaluating a low-area, but high-throughput, AES architecture. In contrast to existing work, our DSP/RAM-Based Low-CLB Usage (DRAB-LOCUS) architecture leverages block RAM tiles and Digital Signal Processing (DSP) slices to implement the AES Sub Bytes, Mix Columns, and Add Round Key sub-round transformations, reducing resource usage by a factor of 3 over traditional approaches. To achieve area-efficiency, we built an inner-pipelined architecture using the internal registers of block RAM tiles and DSP slices. Our DRAB-LOCUS architecture features a 12-stage pipeline capable of producing 7.055 Gbps of interleaved encrypted or decrypted data, and only uses 909 Look Up tables, 593 Flip Flops, 16 block RAMs, and 18 DSP slices in the target device.
CCS CONCEPTS• Hardware → Hardware accelerators; High-speed input / output.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.