Background The gut microbiome is a critical modulator of host immunity and is linked to the immune response to respiratory viral infections. However, few studies have gone beyond describing broad compositional alterations in severe COVID-19, defined as acute respiratory or other organ failure. Methods We profiled 127 hospitalized patients with COVID-19 (n = 79 with severe COVID-19 and 48 with moderate) who collectively provided 241 stool samples from April 2020 to May 2021 to identify links between COVID-19 severity and gut microbial taxa, their biochemical pathways, and stool metabolites. Results Forty-eight species were associated with severe disease after accounting for antibiotic use, age, sex, and various comorbidities. These included significant in-hospital depletions of Fusicatenibacter saccharivorans and Roseburia hominis, each previously linked to post-acute COVID syndrome or “long COVID,” suggesting these microbes may serve as early biomarkers for the eventual development of long COVID. A random forest classifier achieved excellent performance when tasked with classifying whether stool was obtained from patients with severe vs. moderate COVID-19, a finding that was externally validated in an independent cohort. Dedicated network analyses demonstrated fragile microbial ecology in severe disease, characterized by fracturing of clusters and reduced negative selection. We also observed shifts in predicted stool metabolite pools, implicating perturbed bile acid metabolism in severe disease. Conclusions Here, we show that the gut microbiome differentiates individuals with a more severe disease course after infection with COVID-19 and offer several tractable and biologically plausible mechanisms through which gut microbial communities may influence COVID-19 disease course. Further studies are needed to expand upon these observations to better leverage the gut microbiome as a potential biomarker for disease severity and as a target for therapeutic intervention.
RNA-binding proteins (RBPs) may play a critical role in gene regulation in various diseases or biological processes by controlling post-transcriptional events such as polyadenylation, splicing and mRNA stabilization via binding activities to RNA molecules. Owing to the importance of RBPs in gene regulation, a great number of studies have been conducted, resulting in a large amount of RNA-Seq datasets. However, these datasets usually do not have structured organization of metadata, which limits their potentially wide use. To bridge this gap, the metadata of a comprehensive set of publicly available mouse RNA-Seq datasets with perturbed RBPs were collected and integrated into a database called RBPMetaDB. This database contains 292 mouse RNA-Seq datasets for a comprehensive list of 187 RBPs. These RBPs account for only ∼10% of all known RBPs annotated in Gene Ontology, indicating that most are still unexplored using high-throughput sequencing. This negative information provides a great pool of candidate RBPs for biologists to conduct future experimental studies. In addition, we found that DNA-binding activities are significantly enriched among RBPs in RBPMetaDB, suggesting that prior studies of these DNA- and RNA-binding factors focus more on DNA-binding activities instead of RNA-binding activities. This result reveals the opportunity to efficiently reuse these data for investigation of the roles of their RNA-binding activities. A web application has also been implemented to enable easy access and wide use of RBPMetaDB. It is expected that RBPMetaDB will be a great resource for improving understanding of the biological roles of RBPs.Database URL: http://rbpmetadb.yubiolab.org
The airway microbiome in persons with cystic fibrosis (pwCF) is correlated with lung function and disease severity. Supplemental oxygen use is common in more advanced CF, yet its role in perturbing airway microbial communities is unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.