Bacteriophages are relatively ubiquitous in the environment and are highly abundant in the human microbiome. Phages can be commonly transmitted between close contacts, but the impact that such transmissions may have on their bacteria counterparts in our microbiomes is unknown.
The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
The human colon is inhabited by a complex community of microbes. These microbes are integral to host health and physiology. Understanding how and when the microbiome causally influences host health will require microbiome models that can be tightly controlled and manipulated. While in vivo models are unrivalled in their ability to study host-microbial interplay, in vitro models are gaining in popularity as methods to study the ecology and function of the gut microbiota, and benefit from tight controllability and reproducibility, as well as reduced ethical constraints. In this set of protocols, we describe the Robogut, a single-stage bioreactor system designed to replicate the conditions of the distal human colon, to culture whole microbial communities derived from stool and/or colonic biopsy samples, with consideration of methods to create culture medium formulations and to build, run, and sample the bioreactor apparatus. Cleaning and maintenance of the bioreactor system are also described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.