Many cases of Clostridioides difficile infection (CDI) are poorly responsive to standard antibiotic treatment strategies, and often patients suffer from recurrent infections characterized by severe diarrhea. Our group previously reported the successful cure of two patients with recurrent CDI using a standardized stool-derived microbial ecosystem therapeutic (MET-1). Using an in vitro model of the distal gut to support bacterial communities, we characterized the metabolite profiles of two defined microbial ecosystems derived from healthy donor stool (DEC58, and a subset community, MET-1), as well as an ecosystem representative of a dysbiotic state (ciprofloxacin-treated DEC58). The growth and virulence determinants of two C. difficile strains were then assessed in response to components derived from the ecosystems. CD186 (ribotype 027) and CD973 (ribotype 078) growth was decreased upon treatment with DEC58 metabolites compared to ciprofloxacin-treated DEC58 metabolites. Furthermore, CD186 TcdA and TcdB secretion was increased following treatment with ciprofloxacin-treated DEC58 spent medium compared to DEC58 spent medium alone. The net metabolic output of C. difficile was also modulated in response to spent media from defined microbial ecosystems, although several metabolite levels were divergent across the two strains examined. Further investigation of these antagonistic properties will guide the development of microbiota-based therapeutics for CDI.
Here, we report comprehensive transcriptomic profiles from Fusobacterium nucleatum under conditions that mimic the first stages of bacterial infection in a highly differentiated adenocarcinoma epithelial cell line. Our transcriptomic in vitro adenocarcinoma approach allows us to measure the expression dynamics and regulation of bacterial virulence and response factors in real time, and is a novel strategy for clarifying the role of F. nucleatum infection in colorectal cancer (CRC) progression. Our data show that: (i) infection alters metabolic and functional pathways in F. nucleatum , allowing the bacterium to adapt to the host-imposed milieu; (ii) infection also stimulates the expression of genes required to help induce and promote a hypoxic and inflammatory microenvironment in the host; and (iii) F. nucleatum invasion occurs by a haematogenous route of infection. Our study identifies novel gene targets from F. nucleatum that are activated during invasion and which may aid in determining how this species invades and promotes disease within the human gastrointestinal tract. These invasion-specific genes may be useful as biomarkers for CRC progression in a host and could also assist in the development of new diagnostic tools and treatments (such as vaccines or small molecule drug targets), which will be able to combat infection and inflammation in the host while circumventing the potential problem of F. nucleatum tolerization.
The human gut microbiota is a complex community of prokaryotic and eukaryotic microbes and viral particles that is increasingly associated with many aspects of host physiology and health. However, the classical microbiology approach of axenic culture cannot provide a complete picture of the complex interactions between microbes and their hosts in vivo. As such, recently there has been much interest in the culture of gut microbial ecosystems in the laboratory as a strategy to better understand their compositions and functions. In this review, we discuss the model platforms and methods available in the contemporary microbiology laboratory to study human gut microbiomes, as well as current knowledge surrounding the isolation of human gut microbes for the potential construction of defined communities for use in model systems. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Fusobacterium nucleatum is a bacterium normally found in the healthy oral cavity but also has an emerging role in colorectal cancer and other cancer settings. The host-microbe interactions of F. nucleatum and its involvement in tumor initiation, progression, and treatment resistance are not fully understood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.