Most methods for the detection of nucleic acids require many reagents and expensive and bulky instrumentation. Here, we report the development and testing of a graphene-based field-effect transistor that uses clustered regularly interspaced short palindromic repeats (CRISPR) technology to enable the digital detection of a target sequence within intact genomic material. Termed CRISPR-Chip, the biosensor uses the gene-targeting capacity of catalytically deactivated CRISPR-associated protein 9 (Cas9) complexed with a specific single-guide RNA and immobilized on the transistor to yield a label-free nucleic-acid-testing device whose output signal can be measured with a simple handheld reader. We used CRISPR-Chip to analyse DNA samples collected from HEK293T cell lines expressing blue fluorescent protein, and clinical samples of Reprints and permissions information is available at www.nature.com/reprints. * kiana_aran@kgi.edu. Correspondence and requests for materials should be addressed to K.A. Author contributions R.H. optimized the CRISPR-Chip design, performed the CRISPR-Chip DMD experiments, data collection and analysis, LOD optimization, HEK-BFP calibration methodologies in the presence and absence of contamination, and kinetic analysis, and prepared the manuscript. S.B. assisted in optimization of the CRISPR-Chip assay protocols, performed the MB-dRNP studies, DMD patient sample analysis, HEK-BFP PCR experiments and analysis, and prepared the manuscript. T.T. assisted with the initial CRISPR-Chip design, performed initial CRISPR-Chip protocols for HEK-BFP studies, and prepared the manuscript. T.d. performed the synthesis of sgRNA for the bfp and Scram studies, genomic purification and initial system design, and helped with manuscript preparation. J.E. contributed to the design of the DMD-based validation of CRISPR-Chip and provided the PCR and sequencing data for the DMD studies. M.S. contributed to the design of the DMD-based validation of CRISPR-Chip and assisted in manuscript preparation. N.A.W. and J.-Y.C. assisted T.D. with the synthesis of sgRNAs for bfp studies and assisted with sample preparation. J.N. and B.G. assisted with CRISPR-Chip data analysis and manuscript preparation. M.A. and J.P. assisted with manuscript preparation and data analysis. R.P. assisted with the design of threshold experiments, data analysis and CRISPR-Chip validation. N.M. supervised the synthesis of sgRNAs for the bfp and Scram studies. I.M.C. assisted with technology design, DMD validation and manuscript preparation. K.A. designed and developed the technology, planned and supervised the project, analysed, interpreted and integrated the data, and prepared the manuscript.
Noninvasive immunization technologies have the potential to revolutionize global health by providing easy-to-administer vaccines at low cost, enabling mass immunizations during pandemics. Existing technologies such as transdermal microneedles are costly, deliver drugs slowly, and cannot generate mucosal immunity, which is important for optimal immunity against pathogens. We present a needle-free microjet immunization device termed MucoJet, which is a three-dimensional microelectromechanical systems-based drug delivery technology. MucoJet is administered orally, placed adjacent to the buccal tissue within the oral cavity, and uses a self-contained gas-generating chemical reaction within its two-compartment plastic housing to produce a high-pressure liquid jet of vaccine. We show that the vaccine jet ejected from the MucoJet device is capable of penetrating the buccal mucosal layer in silico, in porcine buccal tissue ex vivo, and in rabbits in vivo. Rabbits treated with ovalbumin by MucoJet delivery have antibody titers of anti-ovalbumin immunoglobulins G and A in blood serum and buccal tissue, respectively, that are three orders of magnitude higher than rabbits receiving free ovalbumin delivered topically by a dropper in the buccal region. MucoJet has the potential to accelerate the development of noninvasive oral vaccines, given its ability to elicit antibody production that is detectable locally in the buccal tissue and systemically via the circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.