Temperatures in Africa are expected to increase by the end of the century. Heat-related health impacts and perceived health symptoms are potentially a problem, especially in public schools with limited resources. Students (n = 252) aged ~14–18 years from eight high schools completed an hourly heat-health symptom log over 5 days. Data loggers measured indoor classroom temperatures. A high proportion of students felt tired (97.2%), had low concentration (96.8%) and felt sleepy (94.1%) during at least one hour on any day. There were statistically significant correlations, when controlling for school cluster effect and time of day, between indoor temperatures ≥32 °C and students who felt tired and found it hard to breathe. Consistently higher indoor classroom temperatures were observed in classrooms constructed of prefabricated asbestos sheeting with corrugated iron roof and converted shipping container compared to brick classrooms. Longitudinal studies in multiple seasons and different classroom building types are needed.
The poultry abattoir industry continues to grow and contribute significantly to the gross domestic product in many countries. The industry expects working shifts of eight to eleven hours, during which workers are exposed to occupational hazards which include physical hazards ranging from noise, vibration, exposure to cold and ergonomic stress from manual, repetitive tasks that require force. A PubMed, Medline and Science Direct online database search, using specific keywords was conducted and the results confirmed that physical and ergonomic hazards impact on abattoir processing workers health, with harm not only to workers’ health but also as an economic burden due to the loss of their livelihoods and the need for treatment and compensation in the industry. This review endeavours to highlight the contribution poultry processing plays in the development of physical agents and ergonomic stress related occupational diseases in poultry abattoir processing workers. The impact includes noise-induced hearing loss, increased blood pressure, menstrual and work related upper limb disorders. These are summarised as a quick reference guide for poultry abattoir owners, abattoir workers, poultry associations, occupational hygienists and medical practitioners to assist in the safer management of occupational health in poultry abattoirs.
IntroductionMine ash dumps, industries and domestic fuel use have a great impact on air quality and PM10 (particles with a diameter equal to or less than 10 μm) is a pollutant of particular concern.MethodsThe objective of this study was to assess the human health risks posed by exposure to PM10 among a low socio-economic community. The Human Health Risk Assessment (HHRA) framework (i.e. hazard assessment, dose-response assessment, exposure assessment and risk characterization) was applied. PM10 concentrations were monitored for one month during winter and summer, respectively. A HHRA was conducted to assess whether the community was exposed to PM10 concentrations that may pose carcinogenic and non-carcinogenic health risks.ResultsGenerally, the residents were exposed to higher concentrations of PM10 during winter than summer, resulting in a higher risk to health during winter. Results of the HHRA showed that infants were exposed to a higher dose of PM10 than the other life stages when exposed to the same concentration due to differences in inhalation rates and the ratio between inhalation and body weight. However, they were at the same risk of developing adverse effects from exposure to the same concentration of PM10 as the other life stages were exposed to, because the ‘safe’ dose was also higher for infants and since all life stages, in general, are similarly affected by PM unless the chemical composition of the PM is known.ConclusionThis study recommends that infants and children, in particular, should not be exposed to air pollution from domestic fuel burning as one positive step to try and reduce their dose.
IntroductionPoor urban communities are likely to bear the brunt of climate change impacts on health and well-being. The City of Johannesburg, South Africa, is predicted to experience an average increase in ambient temperature of 4°C by 2100. Focusing on the urban environment, this study aimed to determine socio-economic, infrastructural and health-related risk factors for heat-related adverse health effects.MethodsThis was a cross-sectional study. Data of interest were collected using a pretested and validated questionnaire administered to parents of children attending schools participating in a school heat study. Information related to demographic, socio-economic and household-level determinants of health, which has an impact on the individual prevalence of adverse heat-health effects associated with hot weather, was collected for 136 households and 580 individuals.ResultsSweating (n = 208 individuals; 35%), headache and nausea (n = 111; 19%) and weakness, fatigue and dizziness (n = 87; 15%) were the most common heat-health effects reportedly experienced by individuals (n = 580) during hot weather. Individuals who suffered from hypertension (OR = 2.32, 95% CI: 1.34 - 4.05, p = 0.003) and individuals older than 60 years (OR = 1.81, 95% CI: 1.27-1.99, p < 0.001) compared to other age groups were more likely to experience 'any heat-health effects'. Living in government-sponsored detached housing and in houses with asbestos roofs were associated with an increase in reported experience of 'any heat-health effects' compared to living in other housing types.ConclusionHeat-health awareness campaigns should target people suffering from pre-existing diseases and the elderly, as these groups are especially vulnerable to heat. Focus should also be given to appropriate roofing and insulation in government-sponsored housing since summertime temperatures are projected to increase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.