Purpose: Chronic lymphocytic leukemia (CLL) cells in lymph nodes (LN), from which relapses are postulated to originate, display an antiapoptotic profile in contrast to CLL cells from peripheral blood (PB). The BH3 mimetic ABT-737 antagonizes the antiapoptotic proteins Bcl-X L and Bcl-2 but not Mcl-1 or Bfl-1. Previously, it was shown that CD40-stimulated CLL cells were resistant to ABT-737. We aimed to define which antiapoptotic proteins determine resistance to ABT-737 in CLL and whether combination of known antileukemia drugs and ABT-737 was able to induce apoptosis of CD40-stimulated CLL cells.Experimental Design: To mimic the LN microenvironment, PB lymphocytes of CLL patients were cultured on feeder cells expressing CD40L and treated with ABT-737 with or without various drugs. In addition, we carried out overexpression or knockdown of pro-and antiapoptotic proteins in immortalized primary B cells.Results: Upon CD40 stimulation patient-specific variations in ABT-737 sensitivity correlated with differences in levels of Mcl-1 and its antagonist Noxa. Knockdown of Noxa, as well as Mcl-1 overexpression, corroborated the importance of the Noxa/Mcl-1 ratio in determining the response to ABT-737. Inhibition of NF-kB resulted in increased Noxa levels and enhanced sensitivity to ABT-737. Interestingly, increasing the Noxa/Mcl-1 ratio, by decreasing Mcl-1 (dasatinib and roscovitine) or increasing Noxa levels (fludarabine and bortezomib), resulted in synergy with ABT-737.Conclusions: Thus, the Noxa/Mcl-1 balance determines sensitivity to ABT-737 in CD40-stimulated CLL cells. These data provide a rationale to investigate the combination of drugs which enhance the Noxa/Mcl-1 balance with ABT-737 to eradicate CLL in chemoresistant niches.
Mutations or deletions in TP53 or ATM are well-known determinants of poor prognosis in chronic lymphocytic leukemia (CLL), but only account for approximately 40% of chemo-resistant patients. Genome-wide sequencing has uncovered novel mutations in the splicing factor sf3b1, that were in part associated with ATM aberrations, suggesting functional synergy. We first performed detailed genetic analyses in a CLL cohort (n=110) containing ATM, SF3B1 and TP53 gene defects. Next, we applied a newly developed multiplex assay for p53/ATM target gene induction and measured apoptotic responses to DNA damage. Interestingly, SF3B1 mutated samples without concurrent ATM and TP53 aberrations (sole SF3B1) displayed partially defective ATM/p53 transcriptional and apoptotic responses to various DNA-damaging regimens. In contrast, NOTCH1 or K/N-RAS mutated CLL displayed normal responses in p53/ATM target gene induction and apoptosis. In sole SF3B1 mutated cases, ATM kinase function remained intact, and γH2AX formation, a marker for DNA damage, was increased at baseline and upon irradiation. Our data demonstrate that single mutations in sf3b1 are associated with increased DNA damage and/or an aberrant response to DNA damage. Together, our observations may offer an explanation for the poor prognosis associated with SF3B1 mutations.
In recent years considerable progress has been made in treatment strategies for chronic lymphocytic leukemia (CLL). However, the disease remains incurable because of the development of chemoresistance. Strategies to overcome resistance mechanisms are therefore highly needed. At least two mechanisms contribute to the development of resistance to drugs; acquired mutations resulting in a dysfunctional p53 response and shifts in the balance between apoptosis-regulating proteins. Platinum-based compounds have been successfully applied in relapsed lymphoma and recently also in high-risk CLL. In this study we investigated the efficacy and mechanism of action of cisplatinum (CDDP) in chemorefractory CLL. Independent of p53-functional status, CDDP acted synergistically with fludarabine (F-ara-A). The response involved generation of reactive oxygen species (ROS), which led to specific upregulation of the proapoptotic BH3-only protein Noxa. Induction of Noxa resulted in cell death by apoptosis as inhibition of caspase activation completely abrogated cell death. Furthermore, drug-resistance upon CD40-ligand stimulation, a model for the protective stimuli provided in lymph nodes, could also be overcome by CDDP/F-ara-A. ROS accumulation resulted in Noxa upregulation mainly at the transcriptional level and this was, at least in part, mediated by the mitogen-activated protein kinase p38. Finally, Noxa RNA-interference markedly decreased sensitivity to CDDP/F-ara-A, supporting a key role for Noxa as mediator between ROS signaling and apoptosis induction. Our data indicate that interference in the cellular redox balance can be exploited to overcome chemoresistance in CLL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.