We present a structural study on late Miocene-early Pliocene out-of-sequence thrusts affecting the southern Apennine orogenic belt. The analyzed structures are exposed in the Campania region (southern Italy). Here, thrusts bound the N-NE side of the carbonate ridges that form the regional mountain backbone. In several outcrops, the Mesozoic carbonates are superposed onto the unconformable wedge-top basin deposits of the upper Miocene Castelvetere Group, providing constraints to the age of the activity of this thrusting event. Moreover, a 4-km-long N-S oriented electrical resistivity tomography profile, carried out along the Caserta mountains, sheds light on the structure of this thrust system in an area where it is not exposed. Further information was carried out from a tunnel excavation that allowed us to study some secondary fault splays. The kinematic analysis of out-of-sequence major and minor structures hosted both in the hanging wall (Apennine Platform carbonates) and footwall (Castelvetere Group deposits and Lagonegro-Molise Basin units) indicates the occurrence of two superposed shortening directions, about E-W and N-S, respectively. We associated these compressive structures to an out-of-sequence thrusting event defined by frontal thrusts verging to the east and lateral ramp thrusts verging to the north and south. We related the out-of-sequence thrusting episode to the positive inversion of inherited normal faults located in the Paleozoic basement. These envelopments thrust upward to crosscut the allochthonous wedge, including, in the western zone of the chain, the upper Miocene wedge-top basin deposits.
Central–southern Italy is one of the most suitable areas in the world for tephrostratigraphic studies, owing to the numerous volcanic sources with explosive activity during the Pleistocene. This work presents a systematic investigation of the chemical (trace elements) and isotopic (Sr and Nd) compositions of the main tephra markers within lacustrine sediments of the San Gregorio Magno Basin (Campania, southern Italy). This study: (i) provides full geochemical (trace elements and isotopes) characterization of eight significant Upper Pleistocene marker layers (X‐6, X‐5, C‐22, MEGT/Y‐7, CI/Y‐5, C‐10, Y‐3, NYT/C2) widely dispersed over the Mediterranean area; (ii) proposes a new tephra marker for Marine Isotope Stage 7, dated to 240 ka; and (iii) refines the correlations of tephra levels belonging to the investigated sequence. This study highlights that in most cases the Nd isotope composition of the glass and Sr isotope composition of the coexisting minerals are more reliable than 87Sr/86Sr of the glass, and hence is more helpful as a further tool for tephrostratigraphic correlations, as recently proposed in the literature. Moreover, this study is a first step towards the construction of a complete geochemical database for future tephra investigations in the Mediterranean area. Copyright © 2019 John Wiley & Sons, Ltd.
Active calderas are complex volcanic systems that typically host hydrothermal manifestations such as fumaroles, mud pools, and steaming grounds (e.g.
Silicic calderas are volcanic systems whose unrest evolution is more unpredictable than other volcano types because they often do not culminate in an eruption. Their complex structure strongly influences the post-collapse volcano-tectonic evolution, usually coupling volcanism and ground deformation. Among such volcanoes, the Campi Flegrei caldera (southern Italy) is one of the most studied. Significant longand short-term ground deformations characterise this restless volcano. Several studies performed on the marine-continental succession exposed in the central sector of the Campi Flegrei caldera provided a reconstruction of ground deformation during the last 15 kyr. However, considering that over one-third of the caldera is presently submerged beneath the Pozzuoli Gulf, a comprehensive stratigraphic on-land-offshore framework is still lacking. This study aims at reconstructing the offshore succession through analysis of high-resolution single and multichannel reflection seismic profiles and correlates the resulting seismic stratigraphic framework with the stratigraphy reconstructed on-land. Results provide new clues on the causative relations between the intra-caldera marine and volcaniclastic sedimentation and the alternating phases of marine transgressions and regressions originated by the interplay between ground deformation and sea-level rise. The volcano-tectonic reconstruction, provided in this work, connects the major caldera floor movements to the large Plinian eruptions of Pomici Principali (12 ka) and Agnano Monte Spina (4.55 ka), with the onset of the first post-caldera doming at ca. 10.5 ka. We emphasise that ground deformation is usually coupled with volcanic activity, which shows a self-similar pattern, regardless of its scale. Thus, characterising the long-term deformation history becomes of particular interest and relevance for hazard assessment and definition of future unrest scenarios.
Our research focuses on the reconstruction of turbidity paleocurrents of the Cilento Group in the Cilento area (southern Apennines, Italy). These deposits were formed in the wedge-top basin above the oceanic Ligurian Accretionary Complex, the early orogenic wedge of the southern Apennines. The Cilento Group succession, whose age ranges between the uppermost Burdigalian and lowermost Tortonian, consists of a thick pile of sandstones, conglomerates, marls and pelites grouped in two formations (Pollica and San Mauro Fms). We retrieved information on the turbidity current directions through sedimentary features such as flute and groove casts, flame structures and ripple marks. The aim of this study is to shed light on the early tectonic evolution of the southern Apennines by reconstructing the geometry of this basin, the source areas that fed it and the paleogeography of the central Mediterranean area in the Miocene. We analyzed 74 sites in both formations and collected 338 measurements of paleocurrent indicators. Because the succession was affected by severe thrusting and folding, every paleocurrent measurement was restored, reinstating the bedding in the horizontal attitude. Results indicate a complex pattern of turbidity current flow directions consistent with a basin model fed by a spectrum of sources, including recycled clasts from the Ligurian Accretionary Complex, Calabria–Peloritani Terrane and the Apennine Platform units and volcaniclastics from the synorogenic volcanoes located in the Sardinia block.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.