Phase transitions are usually treated as equilibrium phenomena, which yields telltale universality classes with scaling behavior of relaxation time and healing length. However, in second-order phase transitions relaxation time diverges near the critical point (“critical slowing down”). Therefore, every such transition traversed at a finite rate is a non-equilibrium process. Kibble-Zurek mechanism (KZM) captures this basic physics, predicting sizes of domains – fragments of broken symmetry – and the density of topological defects, long-lived relics of symmetry breaking that can survive long after the transition. To test KZM we simulate Bose-Einstein condensation in a ring using stochastic Gross-Pitaevskii equation and show that BEC formation can spontaneously generate quantized circulation of the newborn condensate. The magnitude of the resulting winding numbers and the time-lag of BEC density growth – both experimentally measurable – follow scalings predicted by KZM. Our results may also facilitate measuring the dynamical critical exponent for the BEC transition.
Continuous phase transitions occur in a wide range of physical systems, and provide a context for the study of non-equilibrium dynamics and the formation of topological defects. The Kibble-Zurek (KZ) mechanism predicts the scaling of the resulting density of defects as a function of the quench rate through a critical point, and this can provide an estimate of the critical exponents of a phase transition. In this work, we extend our previous study of the miscible-immiscible phase transition of a binary Bose-Einstein condensate (BEC) composed of two hyperfine states in which the spin dynamics are confined to one dimension (Sabbatini et al 2011 Phys. Rev. Lett. 107 230402). The transition is engineered by controlling a Hamiltonian quench of the coupling amplitude of the two hyperfine states and results in the formation of a random pattern of spatial domains. Using the numerical truncated Wigner phase-space method, we show that in a ring BEC the number of domains formed in the phase transitions scales as predicted by the KZ theory. We also consider the same experiment performed with a harmonically trapped BEC, and investigate 4
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.