New hemp (Cannabis sativa L.) strains developed by crossbreeding selected varieties represent a novel research topic worthy of attention and investigation. This study focused on the phytochemical characterization of nine hemp commercial cultivars. Hydrodistillation was performed in order to collect the essential oils (EO), and also the residual water and deterpenated biomass. The volatile fraction was analyzed by GC-FID, GC-MS, and SPME-GC-MS, revealing three main chemotypes. The polyphenolic profile was studied in the residual water and deterpenated biomass by spectrophotometric assays, and HPLC-DAD-MSn and 1H-NMR analyses. The latter were employed for quali–quantitative determination of cannabinoids in the deterpenated material in comparison with the one not subjected to hydrodistillation. In addition, the glandular and non-glandular indumentum of the nine commercial varieties was studied by means of light microscopy and scanning electron microscopy in the attempt to find a possible correlation with the phytochemical and morphological traits. The EO and residual water were found to be rich in monoterpene and sesquiterpene hydrocarbons, and flavonol glycosides, respectively, while the deterpenated material was found to be a source of neutral cannabinoids. The micromorphological survey allowed us to partly associate the phytochemistry of these varieties with the hair morphotypes. This research sheds light on the valorization of different products from the hydrodistillation of hemp varieties, namely, essential oil, residual water, and deterpenated biomass, which proved to be worthy of exploitation in industrial and health applications.
In this study, essential oils (EOs) and hydrolates (Hys) from Italian hemp (Cannabis sativa L. Kompolti cv.) and hop (Humulus Lupulus L., Chinook cv.) supply chains were chemically characterized and tested to investigate their apoptotic potential for the first time. Headspace–Gas Chromatography–Mass Spectrometry (HS-GC-MS) techniques were performed to describe their volatile chemical profile, highlighting a composition rich in terpene derivatives such as monoterpenes and sesquiterpenes among which β-myrcene, limonene, β-caryophyllene and α-humulene were the main constituents of EOs; in contrast, linalool, cis-p-menth-2,8-dien-1-ol, terpinen-4-ol, α-terpineol, caryophyllene oxide, and τ-cadinol were found in the Hys. The cytotoxicity activity on human leukemia cells (HL60), human neuroblastoma cells (SH-SY5Y), human metastatic adenocarcinoma breast cells (MCF7), human adenocarcinoma breast cells (MDA), and normal breast epithelial cell (MCF10A) for the EOs and Hys was studied by MTT assay and cytofluorimetric analysis and scanning and transmission electron microscopy were performed to define ultrastructural changes and the mechanism of cells death for HL 60 cells. An induction of the apoptotic mechanism was evidenced for hemp and hop EOs after treatment with the corresponding EC50 dose. In addition, TEM and SEM investigations revealed typical characteristics induced by the apoptotic pathway. Therefore, thanks to the integration of the applied methodologies with the used techniques, this work provides an overview on the metabolomic profile and the apoptotic potential of hemp and hop EOs and, for the first time, also of Hys. The findings of this preliminary study confirm that the EOs and Hys from Cannabis and Humulus species are sources of bioactive molecules with multiple biological effects yet to be explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.