Large garnet poikiloblasts hosted by leucosome in metapelitic gneiss from Broken Hill reflect complex mineral-melt relationships. The spatial relationship between the leucosomes and the garnet poikiloblasts implies that the growth of garnet was strongly linked to the production of melt. The apparent difficulty of garnet to nucleate a large number of grains during the prograde breakdown of coexisting biotite and sillimanite led to the spatial focussing of melting reactions around the few garnet nuclei that formed. Continued reaction of biotite and sillimanite required diffusion of elements from where minerals were reacting to sites of garnet growth. This diffusion was driven by chemical potential gradients between garnet-bearing and garnet-absent parts of the rock. As a consequence, melt and peritectic K-feldspar also preferentially formed around the garnet. The diffusion of elements led to the chemical partitioning of the rock within an overall context in which equilibrium may have been approached. Thus, the garnetbearing leucosomes record in situ melt formation around garnet porphyroblasts rather than centimetrescale physical melt migration and segregation. The near complete preservation of the high-grade assemblages in the mesosome and leucosome is consistent with substantial melt loss. Interconnected networks between garnet-rich leucosomes provide the most likely pathway for melt migration. Decimetre-scale, coarse-grained, garnet-poor leucosomes may represent areas of melt flux through a large-scale melt transfer network.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analyses of 1,407 sedimentary (diagenetic and syngenetic) pyrites from 45 carbonaceous shale and unconsolidated sulfidic sediment samples, ranging in age from Paleoarchean to present day, show a considerable range of trace element compositions. Arsenic, Ni, Pb, Cu, and Co are among the most abundant trace elements, with medians ranging from 100 to 1,000 ppm. Less abundant elements Mo, Sb, Zn, and Se have median ranges of 10 to 100 ppm, and Ag, Bi, Te, Cd, and Au have median ranges of 0.01 to 10 ppm. Our dataset reveals three main groups of trace elements that are incorporated into pyrite in different ways. Group 1 elements (As, Ni, Co, Sb, Se, and Mo) are contained uniformly throughout the pyrite and may be held within the pyrite crystal structure or as nanoinclusions evenly distributed within pyrite. Group 2 elements (Bi, Pb, Ag, Au, Te, and Cu) generally occur uniformly at low concentrations and may be incorporated into the pyrite structure but are highly variable at high concentrations, where they may also occur as microinclusions. Group 3 elements (Zn and Cd) tend to have highly variable abundances and generally occur in pyrite as microinclusions of sphalerite.Factor analyses of the dataset identified five factors that account for 65.4% of the variance in pyrite trace element concentrations. Factor 1 includes Pb, Bi, Au, and Te, and explains 18.1% of the variance, possibly due to As(II) (Qian et al., 2013) or As(III) substituting for Fe in pyrite, which induces the uptake of these elements. Factor 2 includes Co, Ni, and As and accounts for 13.6% of the variance, possibly due to the presence of As(-I) substituting for S(-II) in pyrite, which, in turn, promotes the uptake of Ni and Co. Factor 3 includes Zn and Cd and explains 12.3% of the variance and is due to the presence of sphalerite inclusions. Factor 4 includes Se, Ag, and Sb and explains 11.0% of the variance, which is believed to reflect coeval input of these elements into the oceans during periods of increased oxygenation. Factor 5 includes Mn, Cu, and Mo and explains 10.4% of the variance. It is likely that this behavior is due to these elements being delivered together to the sediments by adsorbing to Mn (hydro)oxides, which are released when the Mn (hydro)oxides dissolve in reducing bottom waters or pore waters.Variations in pyrite texture do not show consistent compositional patterns between different samples, though within the same sample later formed pyrite tends to have lower trace element abundance. Many trace elements associated with mafic extrusions/circulation of fluids through mafic rocks (Ni, Co) are more enriched in Archean sedimentary pyrite at times when mafic volcanism/circulation of fluids through mafic rocks was more active. Similarly, some trace elements tend to be more enriched in Phanerozoic pyrite due to increasing levels of atmospheric oxidation.
The 750 km 2 Dayman dome of the Late Cretaceous Suckling-Dayman massif, eastern Papua New Guinea, is a domed landform that rises to an elevation of 2850 m. The northern edge of the dome is a fault scarp >1000 m high that is now part of an active microplate boundary separating continental crust of the New Guinea highlands from continental and oceanic crust of the Woodlark microplate. Previous work has shown that a parallel belt of eclogite-bearing core complexes north-east of the Dayman dome were exhumed from up to 24-28 kbar in the last few millions of years. The remarkably fresh and lightly eroded scarp of the Dayman dome exposes shallowly-dipping mylonitic (S1) metabasite rocks (500 m thick) on the northern flank of Mount Dayman. Field relationships near the base of this scarp show a cross cutting suite of ductile and brittle meso-structures that includes: (i) rare ductile S2 folia with a shallowly ESE-plunging mineral elongation lineation defined by sodic-calcic blue amphibole; (ii) narrow steeply-dipping ductile D2 shear zones; and (iii) semi-brittle to brittle fault zones. Pumpellyite-actinolite facies assemblages reported by previous workers to contain local aragonite, lawsonite and ⁄ or glaucophane are found in the core of the complex at elevations greater than 2000 m. These assemblages indicate peak metamorphic pressures of 6-9.5 kbar, demonstrating exhumation of the core of the Dayman dome from depths of 20-30 km. The S1 metamorphic mineral assemblage in metabasite includes actinolite-chlorite-epidote-albite-quartz-calcite-titanite, indicative of greenschist facies conditions for the main deformation. New mineral equilibria modelling suggests that this S1 assemblage evolved at 5.9-7.2 kbar at 425°C. Modelling variable Fe 3+ indicates that the sodic-calcic blue amphibole (D2) formed under a higher oxidation state compared with the S1 assemblage, probably at <4.5 kbar. A SE-dipping, Mio-Pliocene sedimentary sequence (Gwoira Conglomerate) forms a hangingwall block juxtaposed by low-angle fault contact with the metabasite footwall. Prehnite-bearing D3 brittle fault zones separate the two blocks and likely accommodated the final exhumation of the S1 greenschist facies assemblage in the footwall. These results indicate that the extensive Mt Dayman fault surface coincides with a domed S1 greenschist facies foliation that was last active at >20 km depth. Exhumation of this foliation must therefore be controlled by brittle faults of the active microplate boundary that are largely not observed in the study area. The structural record of the final exhumation of the Dayman dome to the surface was likely lost as a result of erosion, poor exposure or wide spacing of semi-brittle to brittle fault zones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.