BackgroundAntibiotic-associated gastrointestinal signs (AAGS) occur commonly in cats. Co-administration of synbiotics is associated with decreased AAGS in people, potentially due to stabilization of the fecal microbiome and metabolome. The purpose of this double-blinded randomized-controlled trial was to compare AAGS and the fecal microbiome and metabolome between healthy cats that received clindamycin with a placebo or synbiotic.Methods16 healthy domestic shorthair cats from a research colony were randomized to receive 150 mg clindamycin with either a placebo (eight cats) or commercially-available synbiotic (eight cats) once daily for 21 days with reevaluation 603 days thereafter. All cats ate the same diet. Food consumption, vomiting, and fecal score were recorded. Fecal samples were collected daily on the last three days of baseline (days 5–7), treatment (26–28), and recovery (631–633). Sequencing of 16S rRNA genes and gas chromatography time-of-flight mass spectrometry was performed. Clinical signs, alpha and beta diversity metrics, dysbiosis indices, proportions of bacteria groups, and metabolite profiles were compared between treatment groups using repeated measures ANOVAs. Fecal metabolite pathway analysis was performed. P < 0.05 was considered significant. The Benjamini & Hochberg’s False Discovery Rate was used to adjust for multiple comparisons.ResultsMedian age was six and five years, respectively, for cats in the placebo and synbiotic groups. Hyporexia, vomiting, diarrhea, or some combination therein were induced in all cats. Though vomiting was less in cats receiving a synbiotic, the difference was not statistically significant. Bacterial diversity decreased significantly on days 26–28 in both treatment groups. Decreases in Actinobacteria (Bifidobacterium, Collinsella, Slackia), Bacteriodetes (Bacteroides), Lachnospiraceae (Blautia, Coprococcus, Roseburia), Ruminococcaceae (Faecilobacterium, Ruminococcus), and Erysipelotrichaceae (Bulleidia, [Eubacterium]) and increases in Clostridiaceae (Clostridium) and Proteobacteria (Aeromonadales, Enterobacteriaceae) occurred in both treatment groups, with incomplete normalization by days 631–633. Derangements in short-chain fatty acid, bile acid, indole, sphingolipid, benzoic acid, cinnaminic acid, and polyamine profiles also occurred, some of which persisted through the terminal sampling timepoint and differed between treatment groups.DiscussionCats administered clindamycin commonly develop AAGS, as well as short- and long-term dysbiosis and alterations in fecal metabolites. Despite a lack of differences in clinical signs between treatment groups, significant differences in their fecal metabolomic profiles were identified. Further investigation is warranted to determine whether antibiotic-induced dysbiosis is associated with an increased risk of future AAGS or metabolic diseases in cats and whether synbiotic administration ameliorates this risk.
BackgroundItraconazole is commonly used to treat systemic fungal infections in dogs, but problems exist with absorption and cost.ObjectiveTo determine oral bioequivalence of generic and compounded itraconazole compared to original innovator (brand name) itraconazole in healthy dogs.AnimalsNine healthy, adult research Beagle dogs.MethodsA randomized, 3‐way, 3‐period, crossover design with an 8‐day washout period. After a 12‐hour fast, each dog received 100 mg (average: 10.5 mg/kg) of either innovator itraconazole, an approved human generic capsule, or compounded itraconazole (compounded using a commercially available compounding vehicle) with a small meal. Plasma was collected at predetermined intervals for high pressure liquid chromatography analysis. Concentration data were analyzed using noncompartmental pharmacokinetics to determine area under the curve (AUC), peak concentration (CMAX), and terminal half‐life. Bioequivalence tests compared generic and compounded itraconazole to the reference formulation.ResultsAverage ratios of compounded and generic formulations to the reference formulation of itraconazole for AUC were 5.52% and 104.2%, respectively, and for CMAX were 4.14% and 86.34%, respectively. A test of bioequivalence using 2 one‐sided tests and 90% confidence intervals did not meet bioequivalence criteria for either formulation.Conclusion and Clinical ImportanceNeither generic nor compounded itraconazole is bioequivalent to the reference formulation in dogs. However, pharmacokinetic data for generic formulation were similar enough that therapeutic concentrations could be achieved. Compounded itraconazole produced such low plasma concentrations, it is unlikely to be effective; therefore, compounded itraconazole should not be used in dogs.
A prospective study to assess changes in selected plasma biochemistry and electrolyte values, plasma insulin and aldosterone concentrations, and electrocardiography (ECG) was performed on eight female captive tigers (Panthera tigris) and three lions (Panthera leo) undergoing general anesthesia for elective laparoscopic ovariectomy. Each animal was sedated with medetomidine (18-25 microg/kg) and midazolam (0.06-0.1 mg/kg) intramuscularly, and anesthesia was induced with ketamine (1.9-3.5 mg/kg) intramuscularly and maintained with isoflurane. Venous blood samples were collected and analyzed for plasma biochemistry parameters and insulin and aldosterone concentrations. An ECG was recorded at the time of each blood sample collection. Mean plasma potassium, glucose, phosphorus, and aldosterone concentrations increased during anesthesia (P < or = 0.05). One tiger developed hyperkalemia (6.5 mmol/L) 2.5 hr after anesthetic induction. Plasma insulin concentrations were initially below the low end of the domestic cat reference interval (72-583 pmol/L), but mean insulin concentration increased (P < or = 0.05) over time compared with the baseline values. Three tigers and two lions had ECG changes that were representative of myocardial hypoxemia. Based on these results, continuous monitoring of clinical and biochemical alterations during general anesthesia in large nondomestic felids is warranted, and consideration should be given to reversal of medetomidine in these animals should significant changes in electrolytes or ECG occur.
Microalbuminuria was associated with underlying disease. The sensitivity and specificity of the semiquantitative microalbuminuria test for detection of systemic disease were superior to those of other tests. Microalbuminuria testing in conjunction with other screening procedures may increase diagnosis of subclinical disease, but a prospective study in which the predictive values of screening tests are evaluated, with and without microalbuminuria determination, is needed.
Reduction in antibiotic-associated gastrointestinal signs (AAGS) in people co-administered probiotics is believed to result from shifts in the microbiome and metabolome. Amelioration of AAGS in cats secondary to synbiotic administration has recently been demonstrated. Thus, the aim of this randomized, double-blinded, placebo-controlled trial was to characterize associated changes in the fecal microbiome and metabolome. Sixteen healthy research cats received clindamycin with food, followed 1 h later by either a placebo or synbiotic, daily for 21 days. Fecal samples were collected during baseline, antibiotic administration, and 6 weeks after antibiotic discontinuation. Sequencing of 16S rRNA genes was performed, and mass spectrometry was used to determine fecal metabolomic profiles. Results were compared using mixed-model analyses, with P < 0.05 considered significant. Alpha and beta diversity were altered significantly during treatment, with persistent changes in the Shannon and dysbiosis indices. The relative abundance of Actinobacteria (Adlercreutzia, Bifidobacterium, Collinsella, Slackia), Bacteroidia (Bacteroides, Prevotella), Ruminococcaceae (Faecalibacterium, Ruminococcus), Veillonellaceae (Megamonas, Megasphaera, Phascolarctobacterium) and Erysipelotrichaceae ([Eubacterium]) decreased and relative abundance of Clostridiaceae (Clostridium) and Proteobacteria (Enterobacteriaceae) increased during treatment, followed by variable return to baseline relative abundances. Derangements in short-chain fatty acid (SCFA), bile acid, tryptophan, sphingolipid, polyamine, benzoic acid, and cinnaminic acid pathways occurred with significant group by time, group, and time interactions for 10, 5, and 106 metabolites, respectively. Of particular note were changes related to polyamine synthesis. Further investigation is warranted to elucidate the role of these alterations in prevention of AAGS in cats, people, and other animals treated with synbiotics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.