BackgroundRecently, Google Street View (GSV) has been examined as a tool for remotely conducting systematic observation of the built environment. Studies have found it offers benefits over in-person audits, including efficiency, safety, cost, and the potential to expand built environment research to larger areas and more places globally. However, one limitation has been the lack of documentation on the date of imagery collection. In 2011, Google began placing a date stamp on images which now enables investigation of this concern. This study questions the spatio-temporal stability in the GSV date stamp. Specifically, is the imagery collected contemporaneously? If not, how frequently and where is imagery from different time periods woven together to represent environmental conditions in a particular place. Furthermore, how much continuity exists in imagery for a particular time period? Answering these questions will provide guidance on the use of GSV as a tool for built environment audits.MethodsGSV was used to virtually “drive” five sites that are a part of the authors’ ongoing studies. Each street in the sites was “driven” one mouse-click at a time while observing the date stamp on each image. Every time the date stamp changed, this “disruption” was marked on the map. Every street segment in the site was coded by the date the imagery for that segment was collected. Spatial query and descriptive statistics were applied to understand the spatio-temporal patterns of imagery dates.ResultsSpatio-temporal instability is present in the dates of GSV imagery. Of the 353 disruptions, 82.4% occur close to (<25 m) intersections. The remainder occurs inconsistently in other locations. The extent of continuity for a set of images collected with the same date stamp ranged from 3.13 m to 3373.06 m, though the majority of continuous segments were less than 400 m.ConclusionGSV offers some benefits over traditional built environment audits. However, this investigation empirically identifies a previously undocumented limitation in its application for research. Imagery dates can change often and without warning. Caution should be used at intersections where these disruptions are most likely to occur, though caution should be used everywhere when using GSV as a data collection tool.
How people feel about places matters, especially in their neighborhood. It matters for their health, the health of their children, and their social cohesion and use of local resources. A growing body of research in public health, planning, psychology, and sociology bears out this point. Recently, a new methodological tack has been taken to find out how people feel about places. The sketch map, a once popular tool of behavioral geographers and environmental psychologists to understand how people perceive the structural aspects of places, is now being used in concert with geographic information systems (GIS) to capture and spatially analyze the emotional side of urban environmental perception. This confluence is generating exciting prospects for what we can learn about the characteristics of the urban environment that elicit emotion. However, due to the uncritical way this approach has been employed to date, excitement about the prospects must be tempered by the acknowledgement of its potential problems. In this paper we review the extant research on integrating sketch maps with GIS and then employ a case study of mapping youth fear in Los Angeles gang neighborhoods to demonstrate these prospects and the problems, particularly in the areas of (1) representation of environmental perception in GIS and (2) spatial analysis of these data.
BackgroundA call has recently been made by the public health and medical communities to understand the neighborhood context of a patient’s life in order to improve education and treatment. To do this, methods are required that can collect “contextual” characteristics while complementing the spatial analysis of more traditional data. This also needs to happen within a standardized, transferable, easy-to-implement framework.MethodsThe Spatial Video Geonarrative (SVG) is an environmentally-cued narrative where place is used to stimulate discussion about fine-scale geographic characteristics of an area and the context of their occurrence. It is a simple yet powerful approach to enable collection and spatial analysis of expert and resident health-related perceptions and experiences of places. Participants comment about where they live or work while guiding a driver through the area. Four GPS-enabled cameras are attached to the vehicle to capture the places that are observed and discussed by the participant. Audio recording of this narrative is linked to the video via time stamp. A program (G-Code) is then used to geotag each word as a point in a geographic information system (GIS). Querying and density analysis can then be performed on the narrative text to identify spatial patterns within one narrative or across multiple narratives. This approach is illustrated using case studies on post-disaster psychopathology, crime, mosquito control, and TB in homeless populations.ResultsSVG can be used to map individual, group, or contested group context for an environment. The method can also gather data for cohorts where traditional spatial data are absent. In addition, SVG provides a means to spatially capture, map and archive institutional knowledge.ConclusionsSVG GIS output can be used to advance theory by being used as input into qualitative and/or spatial analyses. SVG can also be used to gain near-real time insight therefore supporting applied interventions. Advances over existing geonarrative approaches include the simultaneous collection of video data to visually support any commentary, and the ease-of-application making it a transferable method across different environments and skillsets.
BackgroundThe utility of being able to spatially analyze health care data in near-real time is a growing need. However, this potential is often limited by the level of in-house geospatial expertise. One solution is to form collaborative partnerships between the health and geoscience sectors. A challenge in achieving this is how to share data outside of a host institution’s protection protocols without violating patient confidentiality, and while still maintaining locational geographic integrity. Geomasking techniques have been previously championed as a solution, though these still largely remain an unavailable option to institutions with limited geospatial expertise. This paper elaborates on the design, implementation, and testing of a new geomasking tool Privy, which is designed to be a simple yet efficient mechanism for health practitioners to share health data with geospatial scientists while maintaining an acceptable level of confidentiality. The basic premise of Privy is to move the important coordinates to a different geography, perform the analysis, and then return the resulting hotspot outputs to the original landscape.ResultsWe show that by transporting coordinates through a combination of random translations and rotations, Privy is able to preserve location connectivity among spatial point data. Our experiments with typical analytical scenarios including spatial point pattern analysis and density analysis shows that, along with protecting spatial privacy, Privy maintains the spatial integrity of data which reduces information loss created due to data augmentation.ConclusionThe results from this study suggests that along with developing new mathematical techniques to augment geospatial health data for preserving confidentiality, simple yet efficient software solutions can be developed to enable collaborative research among custodians of medical and health data records and GIS experts. We have achieved this by developing Privy, a tool which is already being used in real-world situations to address the spatial confidentiality dilemma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.