BackgroundIn 2001, it was postulated that tumour-derived exosomes could be a potent source of tumour-associated antigens (TAA). Since then, much knowledge is gained on their role in tumorigenesis but only very recently tumour-derived exosomes were used in dendritic cell (DC)-based immunotherapy. For this, DCs were cultured ex-vivo and loaded with exosomes derived from immunogenic tumours such as melanoma or glioma and re-administrated to induce anti-tumour responses in primary and metastatic tumour mouse models. In contrast, malignant mesothelioma (MM) is a non-immunogenic tumour and because only a few mesothelioma-specific TAA are known to date, we investigated whether mesothelioma-derived exosomes could be used as antigen source in DC-based immunotherapy.MethodsMouse MM AB1 cells were used to generate tumour lysate and tumour-derived exosomes. Tumour lysate was generated by 5 cycles of freeze–thawing followed by sonication of AB1 cells. Tumour exosomes were collected from the AB1 cell culture supernatant and followed a stepwise ultracentrifugation. Protein quantification and electron microscopy were performed to determine the protein amount and to characterise their morphology. To test whether MM derived exosomes are immunogenic and able to stimulate an anti-tumoral response, BALB/c mice were injected with a lethal dose of AB1 tumour cells at day 0, followed by intraperitoneal injection of a single dose of DCs loaded with tumour exosomes, DCs loaded with tumour lysate, or phosphate buffered saline (PBS), at day 7.ResultsMice which received tumour exosome-loaded DC immunotherapy had an increased median and overall survival compared to mice which received tumour lysate-loaded DC or PBS.ConclusionIn this study, we showed that DC immunotherapy loaded with tumour exosomes derived from non-immunogenic tumours improved survival of tumour bearing mice.
ObjectivesAutoantibodies against post-translationally modified proteins (anti-modified protein antibodies or AMPAs) are a hallmark of rheumatoid arthritis (RA). A variety of classes of AMPAs against different modifications on proteins, such as citrullination, carbamylation and acetylation, have now been described in RA. At present, there is no conceptual framework explaining the concurrent presence or mutual relationship of different AMPA responses in RA. Here, we aimed to gain understanding of the co-occurrence of AMPA by postulating that the AMPA response shares a common ‘background’ that can evolve into different classes of AMPAs.MethodsMice were immunised with modified antigens and analysed for AMPA responses. In addition, reactivity of AMPA purified from patients with RA towards differently modified antigens was determined.ResultsImmunisation with carbamylated proteins induced AMPAs recognising carbamylated proteins and also acetylated proteins. Similarly, acetylated proteins generated (autoreactive) AMPAs against other modifications as well. Analysis of anti-citrullinated protein antibodies from patients with RA revealed that these also display reactivity to acetylated and carbamylated antigens. Similarly, anti-carbamylated protein antibodies showed cross-reactivity against all three post-translational modifications.ConclusionsDifferent AMPA responses can emerge from exposure to only a single type of modified protein. These findings indicate that different AMPA responses can originate from a common B-cell response that diversifies into multiple distinct AMPA responses and explain the presence of multiple AMPAs in RA, one of the hallmarks of the disease.
Data of experimental studies in animal models of arthritis suggest that prophylactic and prearthritis treatment strategies are effective and hint at differences in efficacy between antirheumatic drugs.
The link between rheumatoid arthritis and exposure to a bacterial toxin was not found in a population of rheumatoid arthritis patients from Netherlands.
Self-reactive AMPA responses can be induced by exposure to foreign proteins containing PTM. These data show how autoreactive B cell responses against PTM self-proteins can be induced by exposure to PTM foreign proteins and provide new insights on the breach of autoreactive B cell tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.