Background: Matrix metalloproteinases (MMPs) have a pivotal role in the destruction of cartilage in rheumatoid arthritis (RA), which is mediated by the fibroblast-like synoviocytes (FLS). Objective: To examine the in vitro invasiveness of synoviocytes obtained from inflamed joints of patients with arthritis in relation to the expression of MMP 1-14, 17, 19, cathepsin-K, the tissue inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2 by FLS. Methods: FLS were derived from 56 patients (30 with RA, 17 with osteoarthritis (OA), and nine with avascular necrosis (AVN)). Invasive growth of FLS through an artificial matrix (Matrigel) was measured in a transwell system. The number of cells that migrated through the matrix were counted. Proliferation rate was determined by counting the FLS after seven days of culturing. Expression of MMPs, cathepsin-K and TIMPs was investigated with reverse transcriptase-polymerase chain reaction and related to the expression of a household gene, β-actin. Results: FLS from RA showed greater invasive growth than FLS from OA and AVN. The median number of cells that grew through the matrix membrane was 4788 for RA, significantly higher than the number for OA, 1875 (p<0.001) and for AVN, 1530 (p=0.014). The median rate of proliferation of RA FLS was 0.27 per day compared with OA 0.22 per day (p= 0.012) and AVN 0.25 per day, but there was no correlation between the rate of proliferation and invasive growth in vitro. FLS from RA and OA that expressed MMP-1, MMP-3, or MMP-10 were significantly more invasive (median number of invasive cells: 3835, 4248, 4990, respectively) than cells that did not express these MMPs (1605, p=0.03; 1970, p=0.004; 2360, p=0.012, respectively). There was also a significant relationship between the expression of MMP-1 and MMP-9 and the diagnosis RA (both p=0.013). The expression levels of mRNA for MMP-1 and MMP-2 correlated with the protein levels produced by the synoviocytes as measured by an enzyme linked immunosorbent assay (ELISA). Conclusion: FLS of RA invade more aggressively in a Matrigel matrix than OA and AVN FLS; this is not because of a higher rate of proliferation of RA FLS. The significant correlation between the expression of MMP-1, MMP-3, and MMP-10 and invasive growth in a Matrigel transwell system suggests that these MMPs play a part in the invasive growth of FLS obtained from patients with RA.
By using a state-of-the-art technique, we show for the first time that resolution pathways are present in OA patients. A better understanding of these pathways could guide us to more effective therapeutic approaches to inhibit inflammation and further structural damage in OA and RA.
Matrix metalloproteinases (MMPs) are believed to be pivotal enzymes in the invasion of articular cartilage by synovial tissue in rheumatoid arthritis (RA). Here, we investigated the effects of gene transfer of tissue inhibitors of metalloproteinases (TIMPs) on the invasiveness of RA synovial fibroblasts (RASF) in vitro and in vivo. Adenoviral vectors (Ad) were used for gene transfer. The effects of AdTIMP-1 and AdTIMP-3 gene transfer on matrix invasion were investigated in vitro in a transwell system. Cartilage invasion in vivo was studied in the SCID mouse coimplantation model for 60 days. In addition, the effects of AdTIMP-1 and AdTIMP-3 on cell proliferation were investigated. A significant reduction in invasiveness was demonstrated in vitro as well as in vivo in both the AdTIMP-1-and AdTIMP-3-transduced RASF compared with untransduced SF or SF that were transduced with control vectors. In vitro, the number of invading cells was reduced to 25% (Po0.001) in the AdTIMP-1-transduced cells and to 13% (Po0.0001) in the AdTIMP-3-transduced cells (% of untransduced cells). Cell proliferation was significantly inhibited by AdTIMP-3 and, less, by AdTIMP-1. In conclusion, overexpression of TIMP-1 and TIMP-3 by Ad gene transfer results in a marked reduction of the invasiveness of RASF in vitro and in the SCID mouse model. Apart from the inhibition of MMPs, a reduction in proliferation rate may contribute to this effect. These results suggest that overexpression of TIMPs, particularly TIMP-3 at the invasive front of pannus tissue, may provide a novel therapeutic strategy for inhibiting joint destruction in RA.
Objective-To investigate the association of interleukin 10 (IL10) promoter polymorphisms and neuropsychiatric manifestations of systemic lupus erythematosus (SLE). Methods-IL10 haplotypes of 11 healthy volunteers were cloned to confirm that in the Dutch population, only the three common haplotypes (-1082/-819/-592) GCC, ACC and ATA exist. The IL10 promoter polymorphisms of 92 SLE patients and 162 healthy controls were determined. The medical records of the SLE patients were screened for the presence of neuropsychiatric involvement. Results-All cloned haplotypes were either GCC, ACC or ATA. Forty two SLE patients had suVered from neuropsychiatric manifestations (NP-SLE). In NP-SLE patients, the frequency of the ATA haplotype is 30% versus 18% in the controls and 17% in the non-NP-SLE group (odds ratios 1.9, p=0.02, and 2.1, p=0.04, respectively), whereas the GCC haplotype frequency is lower in the NP-SLE group compared with controls and non-NP-SLE patients (40% versus 55% and 61%, odds ratios 0.6, p=0.02 and 0.4 p=0.006). The odds ratio for the presence of NP-SLE is inversely proportional to the number of GCC haplotypes per genotype when the NP-SLE group is compared with non-NP-SLE patients. Conclusions-The IL10 locus is associated with neuropsychiatric manifestations in SLE. This suggests that IL10 is implicated in the immunopathogenesis of neuropsychiatric manifestations in SLE. (Ann Rheum Dis 1999;58:85-89) Genetic factors play an important part in the aetiopathogenesis of systemic lupus erythematosus (SLE). This is illustrated by the 50-60% concordance rate of SLE beween monozygotic twins.1 Furthermore, several susceptibility loci have been identified, including HLA class I and II, C4A complement null alleles, tumour necrosis factor (TNF), and Fc--RIIIa polymorphisms. [2][3][4][5][6]
Multiple genetic factors contribute to susceptibility to rheumatoid arthritis (RA). The extent of variability in disease presentation in RA may be related to genetic heterogeneity. In this study we investigated the association of the TNF gene polymorphism at position +489 with susceptibility to and severity of RA. Analysis of the frequency of the +489 A and G alleles in a group of 293 consecutive RA patients and 138 healthy controls revealed a significant decrease of the A allele. The +489 GA patients had a 3.9 times decreased chance of having erosive disease than +489 GG patients. These results were confirmed in a prospective study using a cohort of 112 patients who were followed for 12 years. The progression rate of the erosion score over 12 years expressed as Sharp score for X-rays of hands and feet was 3.4 per year for the GA-genotyped patients and 12.1 for the GG-genotyped patients. These associations were independent of rheumatoid factor and HLA-shared epitope positivity. In conclusion, these data suggest that the intron TNF +489 polymorphism is associated with susceptibility to and disease severity of RA independently of HLA-shared epitope-positive alleles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.