Garden pea (Pisum sativum) was prominent in early studies investigating the genetic control of flowering and the role of mobile flowering signals. In view of recent evidence that genes in the FLOWERING LOCUS T (FT) family play an important role in generating mobile flowering signals, we isolated the FT gene family in pea and examined the regulation and function of its members. Comparison with Medicago truncatula and soybean (Glycine max) provides evidence of three ancient subclades (FTa, FTb, and FTc) likely to be common to most crop and model legumes. Pea FT genes show distinctly different expression patterns with respect to developmental timing, tissue specificity, and response to photoperiod and differ in their activity in transgenic Arabidopsis thaliana, suggesting they may have different functions. We show that the pea FTa1 gene corresponds to the GIGAS locus, which is essential for flowering under long-day conditions and promotes flowering under short-day conditions but is not required for photoperiod responsiveness. Grafting, expression, and double mutant analyses show that GIGAS/FTa1 regulates a mobile flowering stimulus but also provide clear evidence for a second mobile flowering stimulus that is correlated with expression of FTb2 in leaf tissue. These results suggest that induction of flowering by photoperiod in pea results from interactions among several members of a diversified FT family.
Legumes were among the first plant species to be domesticated, and accompanied cereals in expansion of agriculture from the Fertile Crescent into diverse environments across the Mediterranean basin, Europe, Central Asia, and the Indian subcontinent. Although several recent studies have outlined the molecular basis for domestication and eco-geographic adaptation in the two main cereals from this region, wheat and barley, similar questions remain largely unexplored in their legume counterparts. Here we identify two major loci controlling differences in photoperiod response between wild and domesticated pea, and show that one of these, HIGH RESPONSE TO PHOTOPERIOD (HR), is an ortholog of EARLY FLOWERING 3 (ELF3), a gene involved in circadian clock function. We found that a significant proportion of flowering time variation in global pea germplasm is controlled by HR, with a single, widespread functional variant conferring altered circadian rhythms and the reduced photoperiod response associated with the spring habit. We also present evidence that ELF3 has a similar role in lentil, another major legume crop, with a distinct functional variant contributing to reduced photoperiod response in cultivars widely deployed in short-season environments. Our results identify the factor likely to have permitted the successful prehistoric expansion of legume cultivation to Northern Europe, and define a conserved genetic basis for major adaptive changes in flowering phenology and growth habit in an important crop group.crop adaptation | Pisum sativum | Lens culinaris M any of the world's earliest agricultural systems were based around crops from two important groups: cereals and legumes. Although molecular and genetic analyses have led to considerable progress in understanding the genetic changes underlying domestication and adaptation in several cereal crops, similar efforts in legumes are in general much less advanced. Among the legumes domesticated in the world's oldest farming culture in the Neolithic Near East, the temperate long-day (LD) species lentil (Lens culinaris Medik.), pea (Pisum sativum L.), and chickpea (Cicer arietinum L.) all persist as crops of global economic importance. Of these crops, pea has the widest distribution, the most diverse phenology, and is the best understood genetically, and offers prospects for a detailed exploration of molecular events important in early cultivation and spread (1, 2).P. sativum is now generally viewed as a complex species that includes a wide variety of cultivated and wild forms with pink, purple, or white flowers (1). Wild P. sativum lines are characterized by dehiscent pods and a rough, thick seed coat, and include both tall, climbing forms distributed around the Mediterranean (P. sativum var. elatius) and shorter forms restricted to the Near East (P. sativum var. humile), which intergrade in their areas of overlap. Cytogenetic differences and analyses of genetic diversity support the view that the majority of cultivated peas originated from a distinct gene pool within var....
Genes controlling the transition to flowering have been studied in several species, including Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but have not yet received much attention in legumes. Here, we describe a new allelic series of lateflowering, photoperiod-insensitive mutants in the pea (Pisum sativum) LATE BLOOMER1 (LATE1) gene and show that LATE1 is an ortholog of Arabidopsis GIGANTEA. Mutants display defects in phytochrome B-dependent deetiolation under red light and in the diurnal regulation of pea homologs of several Arabidopsis circadian clock genes, including TIMING OF CAB1, EARLY FLOWERING4, and CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL. LATE1 itself shows strongly rhythmic expression with a small but distinct acute peak following dark-to-light transfer. Mutations in LATE1 prevent the induction of a FLOWERING LOCUS T (FT) homolog FTL in long days but cause only minor alteration to the rhythmic expression pattern of the only known group Ia CONSTANS homolog COLa. The late-flowering phenotype of late1 mutants can be completely rescued by grafting to the wild type, but this rescue is not associated with a significant increase in FTL transcript level in shoot apices. Genetic interactions of late1 with the photoperiod-insensitive, early-flowering sterile nodes (sn) mutant and impairment of the LATE1 diurnal expression rhythm in sn plants suggest that SN may also affect the circadian clock. These results show that several functions of Arabidopsis GIGANTEA are conserved in its pea ortholog and demonstrate that genetic pathways for photoperiodic flowering are likely to be conserved between these two species. They also suggest that in addition to its role in the floral transition, LATE1 also acts throughout reproductive development.
Summary• Species differ in their responses to global changes such as rising CO 2 and temperature, meaning that global changes are likely to change the structure of plant communities. Such alterations in community composition must be underlain by changes in the population dynamics of component species.• Here, the impact of elevated CO 2 (550 µmol mol -1 ) and warming ( + 2 ° C) on the population growth of four plant species important in Australian temperate grasslands is reported. Data collected from the Tasmanian free-air CO 2 enrichment (TasFACE) experiment between 2003 and 2006 were analysed using population matrix models.• Population growth of Themeda triandra , a perennial C 4 grass, was largely unaffected by either factor but population growth of Austrodanthonia caespitosa , a perennial C 3 grass, was reduced substantially in elevated CO 2 plots. Warming and elevated CO 2 had antagonistic effects on population growth of two invasive weeds, Hypochaeris radicata and Leontodon taraxacoides , with warming causing population decline. Analysis of life cycle stages showed that seed production, seedling emergence and establishment were important factors in the responses of the species to global changes.• These results show that the demographic approach is very useful in understanding the variable responses of plants to global changes and in elucidating the life cycle stages that are most responsive.
The DIE NEUTRALIS (DNE) locus in garden pea (Pisum sativum) was previously shown to inhibit flowering under noninductive short-day conditions and to affect a graft-transmissible flowering signal. In this study, we establish that DNE has a role in diurnal and/or circadian regulation of several clock genes, including the pea GIGANTEA (GI) ortholog LATE BLOOMER 1 (LATE1) and orthologs of the Arabidopsis thaliana genes LATE ELONGATED HYPOCOTYL and TIMING OF CHLOROPHYLL A/B BINDING PROTEIN EXPRESSION 1. We also confirm that LATE1 participates in the clock and provide evidence that DNE is the ortholog of Arabidopsis EARLY FLOWERING4 (ELF4). Circadian rhythms of clock gene expression in wild-type plants under constant light were weaker in pea than in Arabidopsis, and a number of differences were also seen in the effects of both DNE/ELF4 and LATE1/GI on clock gene expression. Grafting studies suggest that DNE controls flowering at least in part through a LATE1-dependent mobile stimulus, and dne mutants show elevated expression of a FLOWERING LOCUS T homolog under short-day conditions. However, the early flowering of the dne mutant is not associated with altered expression of a previously described CONSTANS-like gene. Collectively, our results characterize the clock system and reveal its importance for photoperiod responsiveness in a model legume.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.