These results indicate that education by a pharmacist combined with an auto-refill program can improve and sustain appropriate inhaler use by community-dwelling elders in a PACE program. The improved score was maintained 4-6 weeks later indicating a sustained benefit of medication administration education. Optimal inhaler use ensures optimal dosing and supports appropriate inhaler treatment in lieu of oral agents.
This observational study suggests that PT is feasible in patients with EVDs and can be safely tolerated. Further research is warranted in a larger patient population conducted prospectively to assess the potential benefit of early mobility in this patient population.
Background Recent reports have demonstrated that among patients with subarachnoid hemorrhage (SAH) treated with hypertonic NaCl, resultant hyperchloremia has been associated with the development of acute kidney injury (AKI). We report a trial comparing the effect of two hypertonic solutions with different chloride contents on the resultant serum chloride concentrations in SAH patients, with a primary outcome aimed at limiting chloride elevation. Methods A low ChloridE hyperTonic solution for brain Edema (ACETatE) trial is a single-center, double-blinded, double-dummy, randomized pilot trial comparing bolus infusions of 23.4% NaCl and 16.4% NaCl/Na-acetate for the treatment of cerebral edema in patients with SAH. Randomization occurred when patients developed hyperchloremia (serum Cl− ≥ 109 mmol/L) and required hyperosmolar treatment. Results We enrolled 59 patients, of which 32 developed hyperchloremia and required hyperosmolar treatment. 15 patients were randomized to the 23.4% NaCl group, and 17 patients were randomized to the 16.4% NaCl/Na-acetate group. Although serum chloride levels increased similarly in both groups, the NaCl/Acetate group showed a significantly lower Cl− load at the end of the study period (978mEq vs. 2,464mEq, p < 0.01). Secondary outcome analysis revealed a reduced rate of AKI in the Na-acetate group (53.3% in the NaCl group vs. 11.8% in the Na-acetate group, p = 0.01). Both solutions had similar effects on ICP reduction, but NaCl/Acetate treatment had a more prominent effect on immediate post-infusion Na+ concentrations (increase of 2.2 ± 2.8 vs. 1.4 ± 2.6, (p < 0.01)). Proximal tubule renal biomarkers differed in concentration between the two groups. Conclusions Our pilot trial showed the feasibility and safety of replacing 23.4% NaCl infusions with 16.4% NaCl/Na-acetate infusions to treat cerebral edema in patients with SAH. The degree of hyperchloremia was similar in the two groups. 16.4% NaCl/Na-acetate infusions led to lower Cl− load and AKI rates than 23.4% NaCl infusions. Further multi-center studies are needed to corroborate these results. Trial registration clinicaltrials.gov # NCT03204955, registered on 6/28/2017
OBJECTIVE Cerebral vasospasm and delayed cerebral ischemia (DCI) contribute to poor outcome following subarachnoid hemorrhage (SAH). With the paucity of effective treatments, the authors describe their experience with intrathecal (IT) nicardipine for this indication. METHODS Patients admitted to the Emory University Hospital neuroscience ICU between 2012 and 2017 with nontraumatic SAH, either aneurysmal or idiopathic, were included in the analysis. Using a propensity-score model, this patient cohort was compared to patients in the Subarachnoid Hemorrhage International Trialists (SAHIT) repository who did not receive IT nicardipine. The primary outcome was DCI. Secondary outcomes were long-term functional outcome and adverse events. RESULTS The analysis included 1351 patients, 422 of whom were diagnosed with cerebral vasospasm and treated with IT nicardipine. When compared with patients with no vasospasm (n = 859), the treated group was significantly younger (mean age 51.1 ± 12.4 years vs 56.7 ± 14.1 years, p < 0.001), had a higher World Federation of Neurosurgical Societies score and modified Fisher grade, and were more likely to undergo clipping of the ruptured aneurysm as compared to endovascular treatment (30.3% vs 11.3%, p < 0.001). Treatment with IT nicardipine decreased the daily mean transcranial Doppler velocities in 77.3% of the treated patients. When compared to patients not receiving IT nicardipine, treatment was not associated with an increased rate of bacterial ventriculitis (3.1% vs 2.7%, p > 0.1), yet higher rates of ventriculoperitoneal shunting were noted (19.9% vs 8.8%, p < 0.01). In a propensity score comparison to the SAHIT database, the odds ratio (OR) to develop DCI with IT nicardipine treatment was 0.61 (95% confidence interval [CI] 0.44–0.84), and the OR to have a favorable functional outcome (modified Rankin Scale score ≤ 2) was 2.17 (95% CI 1.61–2.91). CONCLUSIONS IT nicardipine was associated with improved outcome and reduced DCI compared with propensity-matched controls. There was an increased need for permanent CSF diversion but no other safety issues. These data should be considered when selecting medications and treatments to study in future randomized controlled clinical trials for SAH.
Acute brain and spinal cord injuries affect hundreds of thousands of people worldwide. Though advances in pre-hospital and emergency and neurocritical care have improved the survival of some to these devastating diseases, very few clinical trials of potential neuro-protective strategies have produced promising results. Medical therapies such as targeted temperature management (TTM) have been trialed in traumatic brain injury (TBI), spinal cord injury (SCI), acute ischemic stroke (AIS), subarachnoid hemorrhage (SAH), and intracranial hemorrhage (ICH), but in no study has a meaningful effect on outcome been demonstrated. To this end, patient selection for potential neuro-protective therapies such as TTM may be the most important factor to effectively demonstrate efficacy in clinical trials. The use of TTM as a strategy to treat and prevent secondary neuronal damage in the intraoperative setting is an area of ongoing investigation. In this review we will discuss recent and ongoing studies that address the role of TTM in combination with surgical approaches for different types of brain injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.