Mechanochemical reaction, a green synthetic esterification route was utilized to prepare long-chain cellulose esters from microcrystalline cellulose. The influence of reaction conditions such as reaction temperature and time were elucidated. Only low dosage of oleic acid, 1-butyl-3-metylimidazolium acetate, and p-toluenesulfonyl chloride were required. The success of modification reaction was confirmed by Fourier transforms infrared spectroscopy as a new absorbance peak at 1731 cm−1 was observed, which indicated the formation of carbonyl group (C=O). Solid-state nuclear magnetic resonance was also performed to determine the structural property and degree of substitution (DS) of the cellulose oleate. Based on the results, increasing reaction temperature and reaction time promoted the esterification reaction and DS. DS values of cellulose oleates slightly decreased after 12 h reaction time. Besides, X-ray diffraction analysis showed the broadening of the diffraction peaks and thermal stability decreased after esterification. Hence, the findings suggested that grafting of oleic acid’s aliphatic chain onto the cellulose backbone lowered the crystallinity and thermal stability.
Dried hybrid fillers comprised of silica/CNF were successfully synthesized in ethanol/water mixed solvents at room temperature without the usage of any precursor. The as-prepared fillers were incorporated with polypropylene (PP) as a polymer matrix through a twin-screw extruder. From surface morphology analysis, the agglomeration of the silica/CNF hybrid fillers was prevented in the PP matrix and they exhibited moderate transparency, around 17.9% and 44.6% T at 660 nm. Further, the chemical structures of the polymer composites were identified by Fourier transform infrared (FT-IR) analysis. According to thermogravimetric analysis (TGA), the insertion of silica as a co-filler to the PP matrix resulted in an increase in its degradation onset temperature and also thermal stability. In addition, the mechanical properties of the PP composites also increased after the blending process with the hybrid fillers. Overall, sample PP-SS/CNF exhibited the highest tensile strength, which was 36.8 MPa, or around 73.55% compared to the pristine PP. The improvements in tensile strength were attributed to good dispersion and enhanced efficiency of the stress transfer mechanism between the silica and the cellulose within the PP matrix. However, elongation of the sample was reduced sharply due to the stiffening effect of the filler.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.