Cellulose films regenerated from aqueous alkali–urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH–urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their dielectric constant on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by inter- and intramolecular hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC films strongly correlate to the dielectric constant of solvents used for the coagulation process. This work, therefore, would be able to provide an indicator to control the mechanical performance of RC film depending on its application and to develop detailed researches on controlling the crystal structure of cellulose.
Mechanochemical reaction, a green synthetic esterification route was utilized to prepare long-chain cellulose esters from microcrystalline cellulose. The influence of reaction conditions such as reaction temperature and time were elucidated. Only low dosage of oleic acid, 1-butyl-3-metylimidazolium acetate, and p-toluenesulfonyl chloride were required. The success of modification reaction was confirmed by Fourier transforms infrared spectroscopy as a new absorbance peak at 1731 cm−1 was observed, which indicated the formation of carbonyl group (C=O). Solid-state nuclear magnetic resonance was also performed to determine the structural property and degree of substitution (DS) of the cellulose oleate. Based on the results, increasing reaction temperature and reaction time promoted the esterification reaction and DS. DS values of cellulose oleates slightly decreased after 12 h reaction time. Besides, X-ray diffraction analysis showed the broadening of the diffraction peaks and thermal stability decreased after esterification. Hence, the findings suggested that grafting of oleic acid’s aliphatic chain onto the cellulose backbone lowered the crystallinity and thermal stability.
There is a growing interest in the fabrication of membranes and packaging materials from natural resources for a sustainable society. A regenerated cellulose (RC) film composed solely of cellulose has outstanding advantages including biodegradability, transparency, mechanical strength, and thermal stability. To expand the application of the RC film, various surface modification methods have been proposed. However, conventional chemical methods have disadvantages such as environmental burden and difficulty in controlling the reaction. In this work, low-pressure plasma treatment, a green, solvent-free, and easily controllable approach, was performed for surface modification of the RC film. The effects of three different plasma species (O2, N2, and CF4) and treatment conditions on the surface properties of RC films were investigated based on water contact angle measurements, chemical composition analysis, and surface topography. O2 and N2 plasma treatment slightly enhanced the surface wettability of RC films due to the etching by the plasma reactive species and the formation of new hydrophilic functional groups. In CF4 plasma treatments, the hydrophobic surface with a contact angle of 120.6° was obtained in a short treatment time (60 s) owing to the deposition of fluorocarbon groups on the surface. However, the treated surface in a longer reaction time resulted in increased wettability due to the diffusion and degradation of fluorine-containing bonds. The new insights could be valuable for further studies of surface modification and functionalization of RC films.
The development of effective methods to utilize industrial and agricultural wastes is crucial from the perspective of a circular economy. Marble powder and olive pomace (OP), byproducts of olive oil production and marble processing, are considered one of the major sources causing severe environmental pollution, especially in Mediterranean countries. Herein, marble powder and OP are aimed to use as fillers in polypropylene (PP)‐based polymer composite. In addition, fractionated OP is further fibrillated by a combination of mechanical grinding and ionic liquid treatment to enhance its performance as a reinforcement. After treatment for 24 h, the particle size decreases from about 2.1 to 1.1 µm, and the lignocellulosic composition also varies due to the partial removal of hemicellulose. Finally, the compounding ratio of polymer composites consisting of PP, marble powder, fibrillated OP, and compatibilizer is optimized using response surface methodology (RSM) to achieve both high mechanical properties and high filler contents. Mechanical properties of polymer composite fabricated with optimum ratio are in excellent agreement with those predicted by RSM. Furthermore, the yield strength and Young's modulus of polymer composite are 33.9 MPa and 1.89 GPa, accordingly, which are higher than those of PP.
Cellulose films regenerated from aqueous alkali-urea solution possess different properties depending on coagulation conditions. However, the correlation between coagulant species and properties of regenerated cellulose (RC) films has not been clarified yet. In this study, RC films were prepared from cellulose nanofiber (CNF) and microcrystalline cellulose (MCC) under several coagulation conditions. Cellulose dissolved in aqueous LiOH/urea solution was regenerated using various solvents at ambient temperature to investigate the effects of their polarity on the properties of RC film. The crystal structure, mechanical properties, and surface morphology of prepared RC films were analyzed using X-ray diffraction (XRD), tensile tester, and atomic probe microscopy (AFM), respectively. It is revealed that the preferential orientation of (110) and (020) crystal planes, which are formed by intra- and inter-hydrogen bonding in cellulose crystal regions, changed depending on coagulant species. Furthermore, we found out that tensile strength, elongation at break, and crystal structure properties of RC film strongly correlate to the dielectric constant of solvents used for coagulation process. This work, therefore, would be able to provide an indicator to control the properties of RC film depending on its application and to develop the detailed research on controlling the crystal structure of cellulose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.