Steady state emission spectra and excited state lifetimes were measured for 1440 distinct heteroleptic [Ir(C^N)2(N^N)]+ complexes prepared via combinatorial parallelized synthesis; 72% of the complexes were found to be luminescent, and the emission maxima of the library spanned the visible spectrum (652–459 nm). Spectral profiles ranged from broad structureless bands to narrow emissions exhibiting vibrational substructure. Measured excited state lifetimes ranged between ∼0.1–14 μs. Automated emission spectral fitting with successive Gaussian functions revealed four distinct measured classes of excited states; in addition to well understood metal–ligand to ligand-charge transfer (3MLLCT) and ligand-centered (3LC) excited states, our classification also identified photophysical characteristics of less explored mixed 3MLLCT/3LC states. Electronic structure features obtained from DFT calculations performed on a large subset of these Ir(III) chromophores offered clear insights into the excited state properties and allowed the prediction of structure/luminescence relationships in this class of commonly used photocatalysts. Models with high prediction accuracy (R2 = 0.89) for emission color were developed on the basis of experimental data. Furthermore, different degrees of nuclear reorganization in the excited state were shown to significantly impact emission energy and excited state lifetimes.
Using a newly designed and developed parallelized photoreactor and colorimetric detection method, a large sampling of bimetallic cocatalysts (Pd/Sn, Pd/Mo, Pd/Ru, Pd/Pb, Pd/Ni, Ni/Sn, Mo/Sn, and Pt/Sn) for photocatalytic water reduction have been tested. Of these cocatalysts, the combination of palladium and tin showed the highest synergistic behavior and peak hydrogen gas production at a low relative fraction of palladium. The resulting palladium/tin bimetallic cocatalysts were characterized, and specifically, and scanning transmission electron microscopy energy-dispersive X-ray spectroscopy indicated that palladium and tin elements reside within the same particle. The experimental catalytic activity for the palladium/tin mixture was compared to density functional theory-derived energy values associated with the adsorption of hydrogen onto a surface. This comparison demonstrated that the typical peak found in electrochemical Sabatier volcano plots at ΔG H* = ∼0 eV were replicated in the experimental photocatalytic system with a peak activity observed at ΔGH* = −0.036 eV. Computational confirmation of the results expressed here demonstrates the efficacy of colorimetric detection of hydrogen in parallel and presents a model for increasingly rapid catalyst screening.
A high-throughput optical screening method for the photocatalytic activity of a structurally diverse library of 1152 cationic iridium(III) complexes ([Ir(C^N)2(N^N)]+), corresponding to all combinations of 48 cyclometalating (C^N) and 24 ancillary (N^N) ligands, was developed. This rapid assay utilizes the colorimetric changes of a high contrast indicator dye, coumarin 6, to monitor the photo-induced electron transfer from a sacrificial amine donor to the metal complex excited state. The resulting [Ir(C^N)2(N^N)]0 can then reduce an aryl bromide to form the highly reactive aryl radical intermediate. The rate of this reaction is dictated by the molecular structure of both coordinating ligands. Relative reaction rate constants determined via this method correlated closely with 19F NMR measurements obtained using a fluorinated substrate. A simple model that expresses the rate constant as a product of a single ″strength″ parameter assigned to each of the 72 ligands can well account for the 1152 measured rate constants. The best performing complexes exhibit much higher reactivity than the benchmark photocatalysts commonly used in photoredox transformations. The catalysts were also successfully tested for their chemoselectivity. The developed screening methodology can enable generation of the large data sets needed to use modern data science to extract structure–activity relationships.
Achieving facile nucleation of noble metal films through atomic layer deposition (ALD) is extremely challenging. To this end, η 4 -2,3-dimethylbutadiene ruthenium tricarbonyl (Ru(DMBD)(CO)3), a zero-valent complex, has recently been reported to achieve good nucleation by ALD at relatively low temperatures and mild reaction conditions. We study the growth mechanism of this precursor by in situ quartz-crystal microbalance and quadrupole mass spectrometry during Ru ALD, complemented by ex situ film characterization and kinetic modeling. These studies reveal that Ru(DMBD)(CO)3 produces high-quality Ru films with excellent nucleation properties. This results in smooth, coalesced films even at low film thicknesses, all important traits for device applications. However, Ru deposition follows a kinetically limited decarbonylation reaction scheme, akin to typical CVD processes, with a 2 strong dependence on both temperature and reaction timescale. The non-self-limiting nature of the kinetically driven mechanism presents both challenges for ALD implementation and opportunities for process tuning. By surveying reports of similar precursors, we suggest that the findings can be generalized to the broader class of zero-oxidation state carbonyl-based precursors used in thermal ALD, with insight into the design of effective saturation studies.
Achieving facile nucleation of noble metal films through atomic layer deposition (ALD) is extremely challenging. To this end, η4-2,3-dimethylbutadiene ruthenium tricarbonyl (Ru(DMBD)(CO)3), a zero-valent complex, has recently been reported to achieve good nucleation by ALD at relatively low temperatures and mild reaction conditions. We study the growth mechanism of this precursor by in situ quartz-crystal microbalance and quadrupole mass spectrometry during Ru ALD, complemented by ex situ film characterization and kinetic modeling. These studies reveal that Ru(DMBD)(CO)3 produces high-quality Ru films with excellent nucleation properties. This results in smooth, coalesced films even at low film thicknesses, all important traits for device applications. However, Ru deposition follows a kinetically limited decarbonylation reaction scheme, akin to typical CVD processes, with a strong dependence on both temperature and reaction timescale. The non-self-limiting nature of the kinetically driven mechanism presents both challenges for ALD implementation and opportunities for process tuning. By surveying reports of similar precursors, we suggest that the findings can be generalized to the broader class of zero-oxidation state carbonyl-based precursors used in thermal ALD, with insight into the design of effective saturation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.