SUMMARYAll humans are colonized withCandidaspecies, mostlyCandida albicans, yet some develop diseases due toCandida, among which genitourinary manifestations are extremely common. The forms of genitourinary candidiasis are distinct from each other and affect different populations. While vulvovaginal candidiasis affects mostly healthy women, candiduria occurs typically in elderly, hospitalized, or immunocompromised patients and in neonates. Despite its high incidence and clinical relevance, genitourinary candidiasis is understudied, and therefore, important questions about pathogenesis and treatment guidelines remain to be resolved. In this review, we summarize the current knowledge about genitourinary candidiasis.
There is an urgent need for new and better vaccines against tuberculosis (TB). Current vaccine design strategies are generally focused on the enhancement of cell-mediated immunity. Antibody-based approaches are not being considered, mostly due to the paradigm that humoral immunity plays little role in the protection against intracellular pathogens. Here, we reappraise and update the increasing evidence for antibody-mediated immunity against Mycobacterium tuberculosis, discuss the complexity of antibody responses to mycobacteria, and address mechanism of protection. Based on these findings and discussions, we challenge the common belief that immunity against M. tuberculosis relies solely on cellular defense mechanisms, and posit that induction of antibody-mediated immunity should be included in TB vaccine development strategies.
Background. The relevance of antibodies (Abs) in the defense against Mycobacterium tuberculosis infection remains uncertain. We investigated the role of Abs to the mycobacterial capsular polysaccharide arabinomannan (AM) and its oligosaccharide (OS) fragments in humans.Methods. Sera obtained from 29 healthy adults before and after primary or secondary bacillus Calmette-Guerin (BCG) vaccination were assessed for Ab responses to AM via enzyme-linked immunosorbent assays, and to AM OS epitopes via novel glycan microarrays. Effects of prevaccination and postvaccination sera on BCG phagocytosis and intracellular survival were assessed in human macrophages.Results. Immunoglobulin G (IgG) responses to AM increased significantly 4–8 weeks after vaccination (P < .01), and sera were able to opsonize BCG and M. tuberculosis grown in both the absence and the presence of detergent. Phagocytosis and intracellular growth inhibition were significantly enhanced when BCG was opsonized with postvaccination sera (P < .01), and these enhancements correlated significantly with IgG titers to AM (P < .05), particularly with reactivity to 3 AM OS epitopes (P < .05). Furthermore, increased phagolysosomal fusion was observed with postvaccination sera.Conclusions. Our results provide further evidence for a role of Ab-mediated immunity to tuberculosis and suggest that IgG to AM, especially to some of its OS epitopes, could contribute to the defense against mycobacterial infection in humans.
Mycobacterium tuberculosis remains a major public health burden. It is generally thought that while B cell- and antibody-mediated immunity plays an important role in host defense against extracellular pathogens, the primary control of intracellular microbes derives from cellular immune mechanisms. Studies on the immune regulatory mechanisms during infection with M. tuberculosis, a facultative intracellular organism, has established the importance of cell-mediated immunity in host defense during tuberculous infection. Emerging evidence suggest a role for B cell and humoral immunity in the control of intracellular pathogens, including obligatory species, through interactions with the cell-mediated immune compartment. Recent studies have shown that B cells and antibodies can significantly impact on the development of immune responses to the tubercle bacillus. In this review, we present experimental evidence supporting the notion that the importance of humoral and cellular immunity in host defense may not be entirely determined by the niche of the pathogen. A comprehensive approach that examines both humoral and cellular immunity could lead to better understanding of the immune response to M. tuberculosis.
Summary Better understanding of the immunological components and their interactions necessary to prevent or control Mycobacterium tuberculosis (Mtb) infection in humans is critical for tuberculosis (TB) vaccine development strategies. While the contributory role of humoral immunity in the protection against Mtb infection and disease is less defined than the role of T cells, it has been well established for many other intracellular pathogens. Here we update and discuss the increasing evidence and the mechanisms of B cells and antibodies in the defense against Mtb infection. We posit that B cells and antibodies have a variety of potential protective roles at each stage of Mtb infection, and postulate that such roles should be considered in the development strategies for TB vaccines and other immune-based interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.