Every year, the Student Debates Subcommittee (SDS) of the Student Affairs Committee (SAC) for the annual Entomological Society of America (ESA) meeting organizes the Student Debates. This year, the SAC selected topics based on their synergistic effect or ability to ignite exponential positive change when addressed as a whole. For the 2019 Student Debates, the SAC SDS identified these topic areas for teams to debate and unbiased introduction speakers to address: 1) how to better communicate science to engage the public, particularly in the area of integrated pest management (IPM), 2) the influential impacts of climate change on agriculturally and medically relevant insect pests, and 3) sustainable agriculture techniques that promote the use of IPM to promote food security. Three unbiased introduction speakers gave a foundation for our audience to understand each debate topic, while each of six debate teams provided a strong case to support their stance or perspective on a topic. Debate teams submitted for a competitive spot for the annual ESA Student Debates and trained for the better part of a year to showcase their talents in presenting logical arguments for a particular topic. Both the debate teams and unbiased introduction speakers provided their insight toward a better understanding of the complexities of each topic and established a foundation to delve further into the topics of science advocacy and communication, climate change, and the many facets of integrated pest management.
Insects and microbes are known to interact in a variety of ways at food facilities, compounding damage. However, little research has explicated how specific common fungal species affect the behavior of the cosmopolitan secondary stored product pest, Lasioderma serricorne. Enhanced knowledge about attraction to microbially-produced volatile organic compounds (MVOCs) may be used to manipulate insect behavior. Aspergillus flavus and Fusarium verticillioides are two common, widespread pre- and postharvest fungi on small cereals that produce aflatoxins and fumonisins, respectively, while directly competing with each other for nutrients. Our goals were to (1) characterize the volatile emissions from grain inoculated by A. flavus or F. verticillioides derived from the cuticle of L. serricorne compared to uninoculated and sanitized grain, and (2) understand how MVOCs from each fungal species affects mobility, attraction, and preference by L. serricorne. Headspace collection revealed that the F. verticillioides- and A. flavus-inoculated grain produced significantly different volatiles compared to sanitized grain or the positive control. Changes in MVOC emissions affected close-range foraging during an Ethovision movement assay, with a greater frequency of entering and spending time in a small zone with kernels inoculated with A. flavus compared to other treatments. In the release-recapture assay, MVOCs were found to be attractive to L. serricorne at longer distances in commercial pitfall traps. There was no preference shown among semiochemical stimuli in a still-air, four-way olfactometer. Overall, our study suggests that MVOCs are important for close- and long-range orientation of L. serricorne during foraging, and that MVOCs may have the potential for inclusion in behaviorally-based tactics for this species.
The ham mite Tyrophagus putrescentiae and the red-legged ham beetle Necrobia rufipes are harmful pests to several high-valued stored products. The regulatory phase-out of the fumigant methyl bromide necessitates the search for alternative fumigants. Propylene oxide (PPO) and ethyl formate (EF) were therefore evaluated in the laboratory for controlling these pests of dry-cured hams. Concentration–mortality studies at 25 °C of PPO and EF found that the mobile stages of the mites were very susceptible to low concentrations of 10 mg/L and less of each gas, while mite eggs were very tolerant and required 20 mg/L for PPO and 80 mg/L of EF for 100% mortality. Mixed life stage cultures of mites and beetles were treated for 24 h with either PPO or EF at 1× and 2× the estimated 99% lethal doses and confirmed effectiveness for controlling simulated pest populations. The sorptive properties of each gas in chambers with ham pieces, dog food kibbles, or fish meal were minimal for a reduction in mite toxicity when compared to treatments in empty chambers. There was no evidence that any desorbed gas occurred at a level toxic to mite eggs in any of the fumigated commodities. These fumigation studies with ham pests support further work with PPO and EF on any changes in the sensory quality of dry-cured hams for human taste and for commercial-scale fumigations toward regulatory approval.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.