Microbes are ubiquitous and play important ecological roles in a variety of habitats. While research has been largely focused on arthropods and microbes separately in the post-harvest supply chain, less attention has been paid to their interactions with each other. Up to this point, there has been no attempt to systematically describe the patterns of behavioral responses by stored-product insects to microbially produced volatile organic compounds (MVOCs). Thus, our aims were to evaluate whether stored-product arthropods were primarily and significantly attracted, repelled, or had a net neutral effect (e.g., unaffected or mixed) by MVOCs presented as (1) complex headspace blends or (2) single constituents and known mixtures. In total, we found 43 articles that contained 384 sets of tests with different combinations of methodology and/or qualitative findings, describing the behavioral responses of 24 stored-product arthropod species from two classes, four orders, and 14 families to 58 individual microbial compounds and the complex headspace blends from at least 78 microbial taxa. A total of five and four stored-product arthropod species were significantly attracted and repelled by MVOCs across odor sources, respectively, while 13 were unaffected or exhibited mixed effects. We summarize the biases in the literature, including that the majority of tests have occurred in the laboratory with a limited subset of methodology and has largely only assessed the preference of adult arthropods. Finally, we identify foundational hypotheses for the roles that MVOCs play for stored-product arthropods as well as gaps in research and future directions, while highlighting that the behavioral responses to MVOCs are complex, context-, and taxon-dependent, which warrants further investigation.
There has been a dearth of research elucidating the behavioral effect of microbially-produced volatile organic compounds on insects in postharvest agriculture. Demonstrating attraction to MVOC’s by stored product insects would provide an additional source of unique behaviorally-relevant stimuli to protect postharvest commodities at food facilities. Here, we assessed the behavioral response of a primary (Rhyzopertha dominica) and secondary (Tribolium castaneum) grain pest to bouquets of volatiles produced by whole wheat that were untempered, or tempered to 12%, 15%, or 19% grain moisture and incubated for 9, 18, or 27 days. We hypothesized that MVOC’s may be more important for the secondary feeder because they signal that otherwise unusable, intact grains have become susceptible by weakening of the bran. However, contrary to our expectations, we found that the primary feeder, R. dominica, but not T. castaneum was attracted to MVOC’s in a wind tunnel experiment, and in a release-recapture assay using commercial traps baited with grain treatments. Increasing grain moisture resulted in elevated grain damage detected by near-infrared spectroscopy and resulted in small but significant differences in the blend of volatiles emitted by treatments detected by gas chromatography coupled with mass spectrometry (GC–MS). In sequencing the microbial community on the grain, we found a diversity of fungi, suggesting that an assemblage was responsible for emissions. We conclude that R. dominica is attracted to a broader suite of MVOC’s than T. castaneum, and that our work highlights the importance of understanding insect-microbe interactions in the postharvest agricultural supply chain.
Although some research has investigated the interactions among stored product insects and microbes, little research has examined how specific fungal life stages affect volatile emissions in grain and linked it to the behavior of Sitophilus oryzae, the cosmopolitan rice weevil. Thus, our goals were to 1) isolate, culture, and identify two fungal life stages of Aspergillus flavus, 2) characterize the volatile emissions from grain inoculated by each fungal morphotype, and 3) understand how microbially-produced volatile organic compounds (MVOCs) from each fungal morphotype affect foraging, attraction, and preference by S. oryzae. We hypothesized that the headspace blends would be unique among our treatments and that this will lead to preferential mobility by S. oryzae among treatments. Using headspace collection coupled with GC-MS, we found the sexual life stage of A. flavus had the most unique emissions of MVOCs compared to the other semiochemical treatments. This translated to a higher interaction with kernels containing grain with the A. flavus sexual life stage, as well as a higher cumulative time spent in those zones by S. oryzae in a video-tracking assay in comparison to the asexual life stage. While fungal cues were important for foraging at close-range, the release-recapture assay indicated that grain volatiles were more important for attraction at longer distances. There was no significant preference between grain and MVOCs in a four-way olfactometer. Overall, this study enhances our understanding of how fungal cues affect the close and longer range foraging ecology of a primarily stored product insect.
Insects and microbes are known to interact in a variety of ways at food facilities, compounding damage. However, little research has explicated how specific common fungal species affect the behavior of the cosmopolitan secondary stored product pest, Lasioderma serricorne. Enhanced knowledge about attraction to microbially-produced volatile organic compounds (MVOCs) may be used to manipulate insect behavior. Aspergillus flavus and Fusarium verticillioides are two common, widespread pre- and postharvest fungi on small cereals that produce aflatoxins and fumonisins, respectively, while directly competing with each other for nutrients. Our goals were to (1) characterize the volatile emissions from grain inoculated by A. flavus or F. verticillioides derived from the cuticle of L. serricorne compared to uninoculated and sanitized grain, and (2) understand how MVOCs from each fungal species affects mobility, attraction, and preference by L. serricorne. Headspace collection revealed that the F. verticillioides- and A. flavus-inoculated grain produced significantly different volatiles compared to sanitized grain or the positive control. Changes in MVOC emissions affected close-range foraging during an Ethovision movement assay, with a greater frequency of entering and spending time in a small zone with kernels inoculated with A. flavus compared to other treatments. In the release-recapture assay, MVOCs were found to be attractive to L. serricorne at longer distances in commercial pitfall traps. There was no preference shown among semiochemical stimuli in a still-air, four-way olfactometer. Overall, our study suggests that MVOCs are important for close- and long-range orientation of L. serricorne during foraging, and that MVOCs may have the potential for inclusion in behaviorally-based tactics for this species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.