Thiesse J, Namati E, Sieren JC, Smith AR, Reinhardt JM, Hoffman EA, McLennan G. Lung structure phenotype variation in inbred mouse strains revealed through in vivo micro-CT imaging. J Appl Physiol
The change in alveolar size and number during the full breathing cycle in mammals remains unanswered, yet these descriptors are fundamental for understanding alveolar-based diseases and for improving ventilator management. Genetic and environmental mouse models are used increasingly to evaluate the evolution of disease in the peripheral lung; however, little is known regarding alveolar structure and function in the fresh, intact lung. Therefore, we have developed an optical confocal process to evaluate alveolar dynamics in the fresh intact mouse lung and as an initial experiment, have evaluated mouse alveolar dynamics during a single respiratory cycle immediately after passive lung deflation. We observe that alveoli become smaller and more numerous at the end of inspiration, and propose that this is direct evidence for alveolar recruitment in the mouse lung. The findings reported support a new hypothesis that requires recruitable secondary (daughter) alveoli to inflate via primary (mother) alveoli rather than from a conducting airway.
In conclusion, micro-CT imaging provides a unique platform for in vivo longitudinal assessment of pulmonary lung cancer progression and potentially tracking of therapies at very high resolutions. The ability to evaluate the same subject over time provides for a sensitive assay that can be carried out on a smaller sample size. When integrated with image processing and analysis routines as detailed in this study, the data acquired from micro-CT imaging can now provide a very powerful assessment of pulmonary disease outcomes.
Respiratory research with mice using micro-computed tomography (micro-CT) has been predominantly hindered by the limited resolution and signal-to-noise ratio (SNR) as a result of respiratory motion artefacts. In this study, we develop a novel technique for capturing the lung microstructure in vivo using micro-CT, through a computer-controlled intermittent iso-pressure breath hold (IIBH), to reduce respiratory motion, increasing resolution and SNR of reconstructed images. We compare four gating techniques, i.e. no gating, late expiratory (LE) gating, late inspiratory (LI) gating and finally intermittent iso-pressure breath hold (IIBH) gating. Quantitatively, we compare several common image analysis methods used to extract valuable physiologic and anatomic information from the respiratory system, and show that the IIBH technique produces the most representative and repeatable results.
Lung cancer nodules, particularly adenocarcinoma, contain a complex intermixing of cellular tissue types: incorporating cancer cells, fibroblastic stromal tissue, and inactive fibrosis. Quantitative proportions and distributions of the various tissue types may be insightful for understanding lung cancer growth, classification, and prognostic factors. However, current methods of histological assessment are qualitative and provide limited opportunity to systematically evaluate the relevance of lung nodule cellular heterogeneity. In this study we present both a manual and an automatic method for segmentation of tissue types in histological sections of resected human lung cancer nodules. A specialized staining approach incorporating immunohistochemistry with a modified Masson's Trichrome counterstain was employed to maximize color contrast in the tissue samples for automated segmentation. The developed, clustering-based, fully automated segmentation approach segments complete lung nodule crosssectional histology slides in less than 1 min, compared to manual segmentation which requires multiple hours to complete. We found the accuracy of the automated approach to be comparable to that of the manual segmentation with the added advantages of improved time efficiency, removal of susceptibility to human error, and 100% repeatability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.