We report here an analysis of the structure of genetic diversity in cultivated sorghums. A core collection of 210 landraces representative of race, latitude of origin, response to day length, and production system was analysed with 74 RFLP probes dispersed throughout the genome. Multivariate analyses showed the specificity of the subrace guinea margaritiferum, as well as the geographical and racial pattern of genetic diversity. Neighbour-joining analysis revealed a clear differentiation between northern and southern equatorial African accessions. The presence of Asian accessions in these 2 major geographical poles for sorghum evolution indicated two introductions of sorghum into Asia. Morphological race also influenced the pattern of sorghum genetic diversity. A single predominant race was identified in 8 of 10 clusters of accessions, i.e., 1 kafir, 1 durra, 4 guinea, and 2 caudatum clusters. Guinea sorghums, with the exception of accessions in the margaritiferum subrace, clustered in 3 geographical groups, i.e., western African, southern African, and Asian guinea clusters; the latter two appeared more closely related. Caudatum were mainly distributed in 2 clusters, the African Great Lakes caudatum cluster and those African caudatum originating from other African regions. This last differentiation appears related to contrasting photoperiod responses. These results aid in the optimization of sampling accessions for introgression in breeding programs.
Genetic diversity of crop species in sub-Sahelian Africa is still poorly documented. Among such crops, pearl millet is one of the most important staple species. In Niger, pearl millet covers more than 65% of the total cultivated area. Analyzing pearl millet genetic diversity, its origin and its dynamics is important for in situ and ex situ germplasm conservation and to increase knowledge useful for breeding programs. We developed new genetic markers and a high-throughput technique for the genetic analysis of pearl millet. Using 25 microsatellite markers, we analyzed genetic diversity in 46 wild and 421 cultivated accessions of pearl millet in Niger. We showed a significantly lower number of alleles and lower gene diversity in cultivated pearl millet accessions than in wild accessions. This result contrasts with a previous study using iso-enzyme markers showing similar genetic diversity between cultivated and wild pearl millet populations. We found a strong differentiation between the cultivated and wild groups in Niger. Analyses of introgressions between cultivated and wild accessions showed modest but statistically supported evidence of introgressions. Wild accessions in the central region of Niger showed introgressions of cultivated alleles. Accessions of cultivated pearl millet showed introgressions of wild alleles in the western, central, and eastern parts of Niger.
Understanding the geographical, environmental and social patterns of genetic diversity on different spatial scales is key to the sustainable in situ management of genetic resources. However, few surveys have been conducted on crop genetic diversity using exhaustive in situ germplasm collections on a country scale and such data are missing for sorghum in sub-Saharan Africa, its centre of origin. We report here a genetic analysis of 484 sorghum varieties collected in 79 villages evenly distributed across Niger, using 28 microsatellite markers. We found a high level of SSR diversity in Niger. Diversity varied between eastern and western Niger, and allelic richness was lower in the eastern part of the country. Genetic differentiation between botanical races was the first structuring factor (Fst = 0.19), but the geographical distribution and the ethnic group to which farmers belonged were also significantly associated with genetic diversity partitioning. Gene pools are poorly differentiated among climatic zones. The geographical situation of Niger, where typical western African (guinea), central African (caudatum) and eastern Sahelian African (durra) sorghum races converge, explained the high observed genetic diversity and was responsible for the interactions among the ethnic, geographical and botanical structure revealed in our study. After correcting for the structure of botanical races, spatial correlation of genetic diversity was still detected within 100 km, which may hint at limited seed exchanges between farmers. Sorghum domestication history, in relation to the spatial organisation of human societies, is therefore key information for sorghum in situ conservation programs in sub-Saharan Africa.
Large ex situ collections require approaches for sampling manageable amounts of germplasm for in-depth characterization and use. We present here a large diversity survey in sorghum with 3367 accessions and 41 reference nuclear SSR markers. Of 19 alleles on average per locus, the largest numbers of alleles were concentrated in central and eastern Africa. Cultivated sorghum appeared structured according to geographic regions and race within region. A total of 13 groups of variable size were distinguished. The peripheral groups in western Africa, southern Africa and eastern Asia were the most homogeneous and clearly differentiated. Except for Kafir, there was little correspondence between races and marker-based groups. Bicolor, Caudatum, Durra and Guinea types were each dispersed in three groups or more. Races should therefore better be referred to as morphotypes. Wild and weedy accessions were very diverse and scattered among cultivated samples, reinforcing the idea that large gene-flow exists between the different compartments. Our study provides an entry to global sorghum germplasm collections. Our reference marker kit can serve to aggregate additional studies and enhance international collaboration. We propose a core reference set in order to facilitate integrated phenotyping experiments towards refined functional understanding of sorghum diversity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.