Stable gait requires active control of the mediolateral (ML) kinematics of the body center of mass (CoM) and the base of support (BoS) in relation to each other. Stance leg hip abductor (HA) muscle spindle afference may be used to guide contralateral swing foot placement and adequately position the BoS in relation to the CoM. We studied the role of HA spindle afference in control of ML gait stability in young and older adults by means of muscle vibration. Healthy young (n = 12) and older (age > 65 years, n = 18) adults walked on a treadmill at their preferred speed. In unperturbed trials, individual linear models using each subject’s body CoM position and velocity at mid-swing as inputs accurately predicted foot placement at the end of the swing phase in the young [mean R2 = 0.73 (SD 0.11)], but less so in the older adults [mean R2 = 0.60 (SD 0.14)]. In vibration trials, HA afference was perturbed either left or right by vibration (90 Hz) in a random selection of 40% of the stance phases. After vibrated stance phases, but not after unvibrated stance phases in the same trials, the foot was placed significantly more inward than predicted by individual models for unperturbed gait. The effect of vibration was stronger in young adults, suggesting that older adults rely less on HA spindle afference. These results show that HA spindle afference in the stance phase of gait contributes to the control of subsequent ML foot placement in relation to the kinematics of the CoM, to stabilize gait in the ML direction and that this pocess is impaired in older adults.
Goal-directed arm movements can be adjusted at short latency to target shifts. r We tested whether similar adjustments are present during walking on a treadmill with shifting stepping targets. r Participants responded at short latency with an adequate gain to small shifts of the stepping targets. r Movements of the feet during walking are controlled in a similar way to goal-directed arm movements if balance is not violated.
Purpose. Many falls in older people occur after tripping or slipping, mainly due to unsuccessful vertical clearances or horizontal distances. A first fall may be explained by several factors related to aging and can be a trigger to subsequent falls. It is unclear if a history of fall changes the kinematics of obstacle crossing, increasing the risk of trips. Here, we determined whether older women reporting a fall history showed different spatial-temporal kinematic parameters during obstacle crossing than non-fallers. In addition, we investigated the presence of asymmetries between the preferred and non-preferred lower limb during obstacle crossing in fallers and non-fallers. Methods. This cross-sectional study recruited older women with a history of fall (n = 10) and without falls (n = 10). They had their kinematic parameters evaluated when walking at self-selected speed along an 8-m walkway, crossing an obstacle positioned in the middle of the walkway, with both preferred and non-preferred limb as the lead limb. The groups were compared, and effects of lower limb preference were also determined in both groups. Results. No main effects of group were observed regarding the kinematic variables. An effect of leg preference was found for post-obstacle horizontal distance, which was greater for the preferred limb in both groups. Conclusions. In conclusion, the kinematics of gait with obstacle crossing does not differentiate between older women with or without a history of recent fall.
People can quickly adjust their goal-directed hand movements to an unexpected visual perturbation (a target jump or background motion). Does this ability decrease with age? We examined how aging affects both the timing and vigor of fast manual and postural adjustments to visual perturbations. Young and older adults stood in front of a horizontal screen. They were instructed to tap on targets presented on the screen as quickly and accurately as possible by moving their hand in the sagittal direction. In some trials, the target or the background moved laterally when the hand started to move. The young and older adults tapped equally accurately, but older adults’ movement times were about 160 ms longer. The manual responses were similar for the young and older adults, but the older adults took about 15 ms longer to respond to both kinds of visual perturbations. The manual responses were also less vigorous for the older adults. In contrast to the young adults, the older adults responded more strongly to the motion of the background than to the target jump, probably because the elderly rely more on visual information for their posture. Thus, aging delays responses to visual perturbations, while at the same time making people rely more on the visual surrounding to adjust goal-directed movements.
When reaching towards an object while standing, one’s hand responds very quickly to visual perturbations such as the target being displaced or the background moving. Such responses require postural adjustments. When the background moves, its motion might be attributed to self-motion in a stable world, and thereby induce compensatory postural adjustments that affect the hand. The changes in posture associated with a given hand movement response may, therefore, be different for the two types of perturbations. To see whether they are, we asked standing participants to move their hand in the sagittal direction away from their body to targets displayed on a horizontal screen in front of them. The target displacements and background motion were in the lateral direction. We found hand movement responses that were in line with earlier reports, with a latency that was slightly shorter for target displacements than for background motion, and that was independent of target displacement size or background motion speed. The trunk responded to both perturbations with a modest lateral sway. The two main findings were that the upper trunk responded even before the hand did so and that the head responded to background motion but hardly responded to target displacements. These findings suggest that postural adjustments associated with adjusting the hand movement precede the actual adjustments to the movement of the hand, while at the same time, participants try to keep their head stable on the basis of visual information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.