We propose an adaptive inexact version of a class of semismooth Newton methods that is aware of the continuous (variational) level. As a model problem, we study the system of variational inequalities describing the contact between two membranes. This problem is discretized with conforming finite elements of order p ≥ 1, yielding a nonlinear algebraic system of variational inequalities. We consider any iterative semismooth linearization algorithm like the Newton-min or the Newton-Fischer-Burmeister which we complement by any iterative linear algebraic solver. We then derive an a posteriori estimate on the error between the exact solution at the continuous level and the approximate solution which is valid at any step of the linearization and algebraic resolutions. Our estimate is based on flux reconstructions in discrete subspaces of H(div, Ω) and on potential reconstructions in discrete subspaces of H 1 (Ω) satisfying the constraints. It distinguishes the discretization, linearization, and algebraic components of the error. Consequently, we can formulate adaptive stopping criteria for both solvers, giving rise to an adaptive version of the considered inexact semismooth Newton algorithm. Under these criteria, the efficiency of the leading estimates is also established, meaning that we prove them equivalent with the error up to a generic constant. Numerical experiments for the Newton-min algorithm in combination with the GMRES algebraic solver confirm the efficiency of the developed adaptive method.
We consider in this paper a model parabolic variational inequality. This problem is discretized with conforming Lagrange finite elements of order p ≥ 1 in space and with the backward Euler scheme in time. The nonlinearity coming from the complementarity constraints is treated with any semismooth Newton algorithm and we take into account in our analysis an arbitrary iterative algebraic solver. In the case p = 1, when the system of nonlinear algebraic equations is solved exactly, we derive an a posteriori error estimate on both the energy error norm and a norm approximating the time derivative error. When p ≥ 1, we provide a fully computable and guaranteed a posteriori estimate in the energy error norm which is valid at each step of the linearization and algebraic solvers. Our estimate, based on equilibrated flux reconstructions, also distinguishes the discretization, linearization, and algebraic error components. We build an adaptive inexact semismooth Newton algorithm based on stopping the iterations of both solvers when the estimators of the corresponding error components do not affect significantly the overall estimate. Numerical experiments are performed with the semismooth Newton-min algorithm and the semismooth Newton-Fischer-Burmeister algorithm in combination with the GMRES iterative algebraic solver to illustrate the strengths of our approach.
In this work, we develop an a-posteriori-steered algorithm for a compositional two-phase flow with exchange of components between the phases in porous media. As a model problem, we choose the two-phase liquid-gas flow with appearance and disappearance of the gas phase formulated as a system of nonlinear evolutive partial differential equations with nonlinear complementarity constraints. The discretization of our model is based on the backward Euler scheme in time and the finite volume scheme in space. The resulting nonlinear system is solved via an inexact semismooth Newton method. The key ingredient for the a posteriori analysis are the discretization, linearization, and algebraic flux reconstructions allowing to devise estimators for each error component. These enable to formulate criteria for stopping the iterative algebraic solver and the iterative linearization solver whenever the corresponding error components do not affect significantly the overall error. Numerical experiments are performed using the Newton-min algorithm as well as the Newton-Fischer-Burmeister algorithm in combination with the GMRES iterative linear solver to show the efficiency of the proposed adaptive method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.