Extreme carbohydrate deficits during a ketogenic diet (KD) may result in metabolic adaptations reflective of low energy availability; however, the manifestation of these adaptations outside of exercise have yet to be elucidated in cyclists and triathletes. The purpose of this study is to investigate the chronic and postprandial metabolic responses to a KD compared to a high-carbohydrate diet (HCD) and habitual diet (HD) in trained competitive cyclists and triathletes. For this randomized crossover trial, six trained competitive cyclist and triathletes (F: 4, M: 2) followed an ad libitum KD and HCD for 14 d each after their HD. Fasting energy expenditure (EE), respiratory exchange ratio (RER), and fat and carbohydrate oxidation (FatOx and CarbOx, respectively) were collected during their HD and after 14 d on each randomly assigned KD and HCD. Postprandial measurements were collected on day 14 of each diet following the ingestion of a corresponding test meal. There were no significant differences in fasting EE, RER, FatOx, or CarbOx among diet conditions (all p > 0.050). Although postprandial RER and CarbOx were consistently lower following the KD meal, there were no differences in peak postprandial RER (p = 0.452), RER incremental area under the curve (iAUC; p = 0.416) postprandial FatOx (p = 0.122), peak FatOx (p = 0.381), or FatOx iAUC (p = 0.164) between the KD and HD meals. An ad libitum KD does not significantly alter chronic EE or substrate utilization compared to a HCD or HD; postprandial FatOx appears similar between a KD and HD; this is potentially due to the high metabolic flexibility of cyclists and triathletes and the metabolic adaptations made to habitual high-fat Western diets in practice. Cyclists and triathletes should consider these metabolic similarities prior to a KD given the potential health and performance impairments from severe carbohydrate restriction.
Endurance athletes frequently employ nutritional strategies to enhance performance. While professional organizations recommend high carbohydrate (HC) diets to maximize performance, many athletes, and researchers have recently shown renewed interest in the ketogenic diet (KD) in hopes to promote “fat adaptation”, which would allow athletes to make use of the essentially unlimited energy resources from stored body fat. This would circumvent one fatigue mechanism, the depletion of muscle glycogen stores, that has been considered central to performance outcomes in endurance events. The present study investigated the effects of participants’ habitual diet (HD), HC, and KD on endurance performance in a 30-km simulated cycling time trial (TT), physiological responses during the TT, and muscle session fuel percentile (SFP) before and after the TT using ultrasonic imaging. Due to the COVID-19 pandemic, data collection ceased after only six recreational cyclists and triathletes (f = 4, m = 6; age: 37.2 ± 12.2; VO2max: 46.8 ± 6.8 ml/kg/min; weekly cycling distance: 225.3 ± 64.2 km). Due to the small sample size, we do not report inferential statistics for our primary outcome measure, cycling performance. Participants completed the KD at the lowest power output. Oxygen consumption (V̇O2), heart rate (HR), and perceived exertion (RPE) during the TT were similar in all conditions. FATox rates were highest in the KD condition and lowest in the HC condition. SFP was lower during KD compared with HD and lower following the TT compared with fasted resting values across all conditions. We discuss methodological considerations into the use of exercise equipment, nutritional interventions, and statistical analysis strategies for study designs like the present. Further research is needed to assess the impact of HC and KD on TT performance in this population.
ClinicalTrials.gov Identifier: NCT04097171; OSF preregistration: https://osf.io/ujx6e/
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.