Polar microalgae live under extreme environmental conditions: permanently low temperatures (−1.7°C to +5°C) and extreme variations in irradiance and day length. These conditions may have led to various specific adaptations allowing Arctic phytoplankton to become specialists under these conditions. The goal of this study is to derive, for polar microalgae, empirical relationships between key physiological parameters (growth rate, photosynthesis–irradiance curve parameters, Chl a : C, and N : C ratios) and growth temperature and irradiance in nutrient replete cultures. Ecophysiological characteristics of polar and temperate microalgae were also compared in order to highlight some strategies that are specific to the polar environment. Most of the polar species are psychrophilic. Polar microalgae have low light‐saturated growth rates (μm) and very low light saturation parameters for growth (KE) but similar initial slopes of their growth–irradiance curve (αµ = μm/KE). Low temperatures probably account for low μm and KE in polar species. The C : Chl a ratios (θ) of polar species are similar to those of temperate species although they have much lower growth rates, which implies major differences in energy allocation. Polar microalgae also exhibit very unique photosynthetic properties [low light saturation parameters for photosynthesis (EK), low maximum photosynthetic rates ( PmC), decreasing PmC and decreasing initial slope of the photosynthesis vs. irradiance curve (α*) with increasing irradiance] and have lower C : N ratios than their temperate cousins, which may be related to a much higher protein content. Some of the implications of these findings in terms of adaptation/acclimation to the environment in which polar species evolve are discussed.
Abstract. The Green Edge initiative was developed to investigate the processes controlling the primary productivity and fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797∘ N, 63.7895∘ W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea-ice cover from the surface to the bottom (at 360 m depth) to better understand the factors driving the PSB. Key variables, such as conservative temperature, absolute salinity, radiance, irradiance, nutrient concentrations, chlorophyll a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, and carbon stocks and fluxes were routinely measured at the ice camp. Meteorological and snow-relevant variables were also monitored. Here, we present the results of a joint effort to tidy and standardize the collected datasets, which will facilitate their reuse in other Arctic studies. The dataset is available at https://doi.org/10.17882/59892 (Massicotte et al., 2019a).
Thalassiosira gravida is a major Arctic diatom responsible for the under-ice spring bloom. We investigated T. gravida physiological plasticity growing it at two temperatures (0 and 5 • C) and under different light intensities typically found in its natural environment. T. gravida showed remarkable thermal-and photo-acclimatory plasticity including: low light saturation parameter for growth (K E) and photosynthesis (E K), low µ max but relatively high Chl a/C, low C/N, and decreasing light-saturated carbon fixation rate (P C m) with increasing growth irradiance. T. gravida also showed remarkable photoprotective features, namely a strong sustained non-photochemical quenching (NPQs, hour kinetics relaxation) supported by a high amount of xanthophyll cycle pigments. T. gravida growth remained possible under a wide range of irradiances but photosynthetic plasticity was higher at moderately low light (up to ∼50 µmol photons m −2 s −1), nevertheless corresponding to the mean in situ conditions under which it predominates, i.e., underneath the spring thin-ice punctuated with melting ponds. The potential role of NPQs in the photophysiological plasticity of T. gravida is discussed.
Abstract. The Green Edge initiative was developed to investigate the processes controlling the primary productivity and the fate of organic matter produced during the Arctic phytoplankton spring bloom (PSB) and to determine its role in the ecosystem. Two field campaigns were conducted in 2015 and 2016 at an ice camp located on landfast sea ice southeast of Qikiqtarjuaq Island in Baffin Bay (67.4797N, 63.7895W). During both expeditions, a large suite of physical, chemical and biological variables was measured beneath a consolidated sea ice cover from the surface to the bottom at 360 m depth to better understand the factors driving the PSB. Key variables such as temperature, salinity, radiance, irradiance, nutrient concentrations, chlorophyll-a concentration, bacteria, phytoplankton and zooplankton abundance and taxonomy, carbon stocks and fluxes were routinely measured at the ice camp. Here, we present the results of a joint effort to tidy and standardize the collected data sets that will facilitate their reuse in other Arctic studies. The dataset is available at http://www.seanoe.org/data/00487/59892/ (Massicotte et al., 2019a).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.