Objectives: This study aimed to investigate the effect of clinical clerkship-associated achievements, such as performance of procedures at the student clinic, observation, and attitude towards a clerkship, on the objective structured clinical examination (OSCE) scores of dental students graduating in restorative dentistry. Materials and Methods: The OSCEs consisted of two stations designed to assess students' clinical skills regarding cavity preparation for a class II gold inlay and a class IV composite restoration. The clerkship achievements, consisting of the number of student clinical procedures performed, observation-related OSCE, and scores of their attitudes towards a conservative dentistry clerkship, were assessed. Correlation and multiple regression analyses were conducted. Results: The correlation coefficient between the OSCE scores for cavity preparation for a class II gold restoration and clerkship attitude scores was 0.241 (p < 0.05). Regarding a class IV composite restoration, OSCE scores showed statistically significant correlations with the observation (r = 0.344, p < 0.01) and attitude (r = 0.303, p < 0.01) scores. In a multiple regression analysis, attitudes towards a clerkship (p = 0.033) was associated with the cavity preparation for a class II gold inlay OSCE scores, while the number of procedure observations (p = 0.002) was associated with the class IV composite restoration OSCE scores. Conclusions: The number of clinical procedures performed by students, which is an important requirement for graduation, showed no correlation with either of the OSCEs scores. (Restor Dent Endod 2013;38(2):79-84)
In this work, we investigate whether S-nitrosoglutathione (GSNO)-conjugated hyaluronic acid-based self-assembled nanoparticles (GSNO-HANPs) can be useful as a chemosensitizing agent to improve the anticancer activity of doxorubicin (DOX). The GSNO-HANPs were prepared by aqueous assembly of GSNO-conjugated HA with grafted poly(lactide- co-glycolide). Aqueous GSNO stability shielded within the assembled environments of the GSNO-HANPs was greatly enhanced, compared to that of free GSNO. The NO release from the GSNO-HANPs was facilitated in the presence of hyaluronidase-1 (Hyal-1) and ascorbic acid at intracellular concentrations. Microscopic analysis showed GSNO-HANPs effectively generated NO within the cells. We observed that NO made the human MCF-7 breast cancer cells vulnerable to DOX. This chemosensitizing activity was supported by the observation of an increased level of ONOO (peroxynitrite), a highly reactive oxygen species, upon co-treatment with the GSNO-HANPs and DOX. Apoptosis assays showed that GSNO-HANP alone exhibited negligible cytotoxic effects and reinforced apoptotic activity of DOX. Animal experiments demonstrated the effective accumulation of GSNO-HANPs in solid MCF-7 tumors and effectively suppressed tumor growth in combination with DOX. This hyaluronic acid-based intracellularly NO-releasing nanoparticles may serve as a significant chemosensitizing agent in treatments of various cancers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.