The surface of bovine serum‐derived exosomes (EXOs) are modified with α‐d‐mannose for facile interaction with mannose receptors on dendritic cells (DCs) and for efficient delivery of immune stimulators to the DCs. The surface of the EXOs is modified with polyethylene glycol (PEG) without particle aggregation (≈50 nm) via the incorporation of 1,2‐distearoyl‐sn‐glycero‐3‐phosphoethanolamine (DSPE) into the lipid layer of the EXO, compared to chemical conjugation by N‐hydroxysuccinimide activated PEG (NHS‐PEG). PEG modification onto the exosomal surface significantly decreases the non‐specific cellular uptake of the EXOs into the DCs. However, the EXOs with mannose‐conjugated PEG‐DSPE (EXO‐PEG‐man) exhibit excellent intracellular uptake into the DCs and boost the immune response by the incorporation of adjuvant, monophosphoryl lipid A (MPLA) within the EXO. After an intradermal injection, a higher retention of EXO‐PEG‐man is observed in the lymph nodes, which could be used for the efficient delivery of immune stimulators and antigens to the lymph nodes in vivo.
Wearable technology requires high-performance sensors with properties such as small size, flexibility, and wireless communication. Stretchability, sensitivity, and tunability are crucial sensor properties; stretchability and sensitivity ensure user comfort and accurate sensing performance, while tunability is essential for implementing sensors in diverse applications with different ranges of motion. In this study, we developed a high performance kirigami piezoelectric strain sensor. Using finite element analysis, the sensing performance was evaluated, and the kirigami patterns were optimized. The electromechanical properties of sensors with four different kirigami patterns were analyzed. A sensor voltage measurement circuit was also designed, amplifying the output voltage 86.5 times by improving measurement accuracy. A piezoelectric kirigami sensor was constructed with a sensitivity of 9.86 V/cm2 and a stretchability of 320.8%, higher than those of previously reported kirigami piezoelectric strain sensors. Finally, the fabricated sensor was successfully applied in a haptic glove for playing musical instruments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.