In ACM CCS 2008, Boldyreva et al. proposed an elegant way of achieving an Identity-based Encryption (IBE) with efficient revocation, which we call revocable IBE (RIBE). One of the significant benefit of their construction is scalability, where the overhead of the trusted authority is logarithmically increased in the number of users, whereas that in the Boneh-Franklin naive revocation way is linearly increased. All subsequent RIBE schemes follow the Boldyreva et al. security model and syntax. In this paper, we first revisit the Boldyreva et al. security model, and aim at capturing the exact notion for the security of the naive but non-scalable Boneh-Franklin RIBE scheme. To this end, we consider a realistic threat, which we call decryption key exposure. We also show that all prior RIBE constructions except for the Boneh-Franklin one are vulnerable to decryption key exposure. As the second contribution, we revisit approaches to achieve (efficient and adaptively secure) scalable RIBE schemes, and propose a simple RIBE scheme, which is the first scalable RIBE scheme with decryption key exposure resistance, and is more efficient than previous (adaptively secure) scalable RIBE schemes. In particular, our construction has the shortest ciphertext size and the fastest decryption algorithm even compared with all scalable RIBE schemes without decryption key exposure resistance.
We put forward new techniques for designing signature schemes. As a result, we present practical signature schemes based on the CDH, the RSA, and the SIS assumptions. Our schemes compare favorably with existing schemes based on these assumptions. Our core idea is the use of tag-based signatures. Concretely, each signatures contains a tag which is uniformly chosen from a suitable tag set. Intuitively, the tag provides a way to embed instances of computational problems. Indeed, carefully choosing these tag spaces provides new ways to partition the set of possible message-tag pairs into "signable" and "unsignable" pairs. In our security proof, we will thus be able to sign all adversarially requested messages, and at the same time use an adversarially generated forgery with suitably large probability.
We propose an anonymous Hierarchical Identity-Based Encryption (anonymous HIBE) scheme that has constant size ciphertexts. This means the size of the ciphertext does not depend on the depth of the hierarchy. Moreover, our scheme achieves the lowest computational cost because during the decryption phase the computational cost of decryption is constant. The security can be proven under reasonable assumptions without using random oracles because it is based on the composite order bilinear group. Our scheme achieves selective-ID security notion.
Abstract. At Eurocrypt 2010, Freeman proposed a transformation from pairing-based schemes in composite-order bilinear groups to equivalent ones in prime-order bilinear groups. His transformation can be applied to pairing-based cryptosystems exploiting only one of two properties of composite-order bilinear groups: cancelling and projecting. At Asiacrypt 2010, Meiklejohn, Shacham, and Freeman showed that prime-order bilinear groups according to Freeman's construction cannot have two properties simultaneously except negligible probability and, as an instance of implausible conversion, proposed a (partially) blind signature scheme whose security proof exploits both the cancelling and projecting properties of composite-order bilinear groups.In this paper, we invalidate their evidence by presenting a security proof of the prime-order version of their blind signature scheme. Our security proof follows a different strategy and exploits only the projecting property. Instead of the cancelling property, a new property, that we call translating, on prime-order bilinear groups plays an important role in the security proof, whose existence was not known in composite-order bilinear groups. With this proof, we obtain a 2-move (i.e., round optimal) (partially) blind signature scheme (without random oracle) based on the decisional linear assumption in the common reference string model, which is of independent interest.As the second contribution of this paper, we construct prime-order bilinear groups that possess both the cancelling and projecting properties at the same time by considering more general base groups. That is, we take a rank n Zp-submodule of Z n 2 p , instead of Z n p , to be a base group G, and consider the projections into its rank 1 submodules. We show that the subgroup decision assumption on this base group G holds in the generic bilinear group model for n = 2, and provide an efficient membership-checking algorithm to G, which was trivial in the previous setting. Consequently, it is still open whether there exists a cryptosystem on composite-order bilinear groups that cannot be constructed on prime-order bilinear groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.