This paper describes three mathematical modelling methods for high‐resolution declassified CORONA KH‐4B images. Since CORONA images are collected with a panoramic camera, several types of geometric distortions are involved. Two methods use the modified collinearity equations, and the third involves the terrain‐dependent rational function model (RFM) which is considered to be a generic sensor model. Comparative analysis of the three mathematical modelling methods is undertaken. The results show that a ± 1·5 pixels level of horizontal and vertical accuracy can be obtained. A digital elevation model (DEM) of a test site is also created.
Multiple strips are required for large area mapping using ALS (Airborne Laser Scanner) system. LiDAR (Light Detection And Ranging) data collected from the ALS system has discrepancies between strips due to systematic errors of on-board laser scanner and GPS/INS, inaccurate processing of the system calibration as well as boresight misalignments. Such discrepancies deteriorate the overall geometric quality of the end products such as DEM (Digital Elevation Model), building models, and digital maps. Therefore, strip adjustment for minimizing discrepancies between overlapping strips is one of the most essential tasks to create seamless point cloud data. This study implemented area-based matching (ABM) to determine conjugate features for computing 3D transformation parameters. ABM is a well-known method and easily implemented for this purpose. It is obvious that the exact same LiDAR points do not exist in the overlapping strips. Therefore, the term "conjugate point" means that the location of occurring maximum similarity within the overlapping strips. Coordinates of the conjugate locations were determined with sub-pixel accuracy. The major drawbacks of the ABM are sensitive to scale change and rotation. However, there is almost no scale change and the rotation angles are quite small between adjacent strips to apply AMB. Experimental results from this study using both simulated and real datasets demonstrate validity of the proposed scheme. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http:// creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.