A new platform for lab-on-a-chip system is suggested that utilizes a biosensor array embedded in a digital microfluidic device. With field effect transistor (FET)-based biosensors embedded in the middle of droplet-driving electrodes, the proposed digital microfluidic device can electrically detect avian influenza antibody (anti-AI) in real time by tracing the drain current of the FET-based biosensor without a labeling process. Digitized transport of a target droplet enclosing anti-AI from an inlet to the embedded sensor is enabled by the actuation of electrowetting-on-dielectrics (EWOD). A reduction of the drain current is observed when the target droplet is merged with a pre-existing droplet on the embedded sensor. This reduction of the drain current is attributed to the specific binding of the antigen and the antibody of the AI. The proposed hybrid device consisting of the FET-based sensor and an EWOD device, built on a coplanar substrate by monolithic integration, is fully compatible with current fabrication technology for control and read-out circuitry. Such a completely electrical manner of inducing the transport of bio-molecules, the detection of bio-molecules, the recording of signals, signal processing, and the data transmission process does not require a pump, a fluidic channel, or a bulky transducer. Thus, the proposed platform can contribute to the construction of an all-in-one chip.
Real-time and label-free detection of antibodies from avian influenza (anti-AI) in an aqueous solution is demonstrated with the use of a nanowire field effect transistor. A real-time measurement system is constructed without leakage paths through the solution medium. The current through the nanowire changes significantly after an injection of an anti-AI solution onto the device, which was previously functionalized by the antigen of AI as a probe of anti-AI. In contrast, no significant response arises when an anti-AI solution is injected onto a non-functionalized device. Therefore, the real-time detection of specific antibody-antigen interaction of the AI is successfully implemented for a chip-based biosensor.
We have proposed a new method for the multiplexed synthesis of heterogeneous nanostructures using a top-down fabricated nanowire heater array. Hydrothermally synthesized nanostructures can be grown only on the heated nanowire through nanoscale temperature control using a Joule heated nanowire. We have demonstrated the selective synthesis of zinc oxide (ZnO) nanowires and copper oxide (CuO) nanostructures, as well as their surface modification with noble metal nanoparticles, using a nanowire heater array. Furthermore, we could fabricate an array of heterogeneous nanostructures via Joule heating of individual nanowire heaters and changing of the precursor solutions in a sequential manner. We have formed a parallel array of palladium (Pd) coated ZnO nanowires and gold (Au) coated ZnO nanowires, as well as a parallel array of ZnO nanowires and CuO nanospikes, in the microscale region by using the developed method.
A charge trapping layer that is separated from the primary gate dielectric is implemented on a FinFET SONOS structure. By virtue of the reduced effective oxide thickness of the primary gate dielectric, a strong gate-to-channel coupling is obtained and thus short-channel effects in the proposed device are effectively suppressed. Moreover, a high program/erase speed and a large shift in the threshold voltage are achieved due to the improved charge injection by the reduced effective oxide thickness. The proposed structure has potential for use in high speed flash memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.