Chimeric antigen receptor‐T (CAR‐T) cell immunotherapy has shown impressive clinical outcomes for hematologic malignancies. However, its broader applications are challenged due to its complex ex vivo cell‐manufacturing procedures and low therapeutic efficacy against solid tumors. The limited therapeutic effects are partially due to limited CAR‐T cell infiltration to solid tumors and inactivation of CAR‐T cells by the immunosuppressive tumor microenvironment. Here, a facile approach is presented to in vivo program macrophages, which can intrinsically penetrate solid tumors, into CAR‐M1 macrophages displaying enhanced cancer‐directed phagocytosis and anti‐tumor activity. In vivo injected nanocomplexes of macrophage‐targeting nanocarriers and CAR‐interferon‐γ‐encoding plasmid DNA induce CAR‐M1 macrophages that are capable of CAR‐mediated cancer phagocytosis, anti‐tumor immunomodulation, and inhibition of solid tumor growth. Together, this study describes an off‐the‐shelf CAR‐macrophage therapy that is effective for solid tumors and avoids the complex and costly processes of ex vivo CAR‐cell manufacturing.
AIM:To evaluate the efficacy of cola treatment for gastric phytobezoars, including diospyrobezoars.
METHODS:A total of 17 patients (range: 48 to 78 years) with symptomatic gastric phytobezoars treated with cola and adjuvant endoscopic therapy were reviewed. Three liters of cola lavage (10 cases) or drink (7 cases) were initially used, and then endoscopic fragmentation was done for the remnant bezoars by using a lithotripsy basket or a polypectomy snare. The overall success of dissolving a gastric phytobezoars with using three liters of cola and the clinical and endoscopic findings were compared retrospectively between four cases of complete dissolution by using only cola and 13 cases of partial dissolution with cola.
RESULTS:After 3 L of cola lavage or drinking, a complete dissolution of bezoars was achieved in four patients (23.5%), while 13 cases (76.5%) were only partially dissolved. Phytobezoars (4 of 6 cases) were observed more frequently than diospyrobezoars (0 of 11) in the group that underwent complete dissolution (P = 0.006). Gender, symptom duration, size of bezoar and method of cola administration were not significantly different between the two groups. Twelve of 13 patients with residual bezoars were completely treated with a combination of cola and endoscopic fragmentation.
CONCLUSION:The rate of complete dissolution with three liters of cola was 23.5%, but no case of diospyrobezoar was completely dissolved using this method. However, pretreatment with cola may be helpful and facilitate endoscopic fragmentation of gastric phytobezoars.
Multiwalled carbon nanotube (MWNT)/poly (vinyl alcohol) (PVA) blend membranes were prepared by the solution-casting method to determine the effect of MWNTs with nanoscale empty inner space along the tube length on the pervaporation performance of a PVA membrane in the separation of alcohol/water mixtures. The blend membranes were then characterized with several analytical methods such as transmission electron microscopy, differential scanning calorimetry, and X-ray diffractometry: Transmission electron microscopy showed that the MWNTs were homogeneously distributed through the PVA matrix. The glass-transition temperature of the PVA membrane was increased from 69.21 to 78.53 C via blending with MWNTs. The crystallinity of the PVA matrix decreased with increasing MWNTs up to 5 wt % from 41 to 36%. The pervaporation properties of the blend membranes were completely different from those of the pure PVA membrane in the separation of water/ethanol mixtures. The flux of the membrane was increased with the amount of MWNTs, whereas the separation factor was maintained up to 1.0 wt % MWNTs. However, beyond that, it was reduced. These results suggested that two factors, the crystallinity of the membrane and the diameters of the MWNTs, affected the performance of the membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.