An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation.
The transformation plasticity of steel during phase transformation under external stress was modelled on a migrating interface diffusion mechanism. Atomic diffusion along the migrating phase interface is assumed to cause transformation plasticity by an accelerated Coble creep. A creep equation on transformation plasticity is derived as a function of transformation rate, temperature and externally applied stress. Predictions are compared with dilatometric measurements during the austenite-to-ferrite and ferrite-to-austenite transformation of steel under various levels of uniaxial compressive stress. Good agreement was found between the calculated and experimental transformation strain. The model proposed also successfully describes the thermally activated behaviour of the transformation strain. The evaluated effective diffusion coefficients on the migrating interface are three to four orders of magnitude larger than those reported for stationary boundaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.