This study was aimed at developing low-alloy steels for nuclear reactor pressure vessels by investigating the effects of alloying elements on mechanical and fracture properties of base metals and heat-affected zones (HAZs). Four steels whose compositions were variations of the composition specification for SA 508 steel (class 3) were fabricated by vacuum-induction melting and heat treatment, and their tensile properties and Charpy impact toughness were evaluated. Microstructural analyses indicated that coarse M 3 C-type carbides and fine M 2 C-type carbides were precipitated along lath boundaries and inside laths, respectively. In the steels having decreased carbon content and increased molybdenum content, the amount of fine M 2 C carbides was greatly increased, while that of coarse M 3 C carbides was decreased, thereby leading to the improvement of tensile properties and impact toughness. Their simulated HAZs also had sufficient impact toughness after postweld heat treatment (PWHT). These findings suggested that the low-alloy steels with high strength and toughness could be processed by decreasing carbon and manganese contents and by increasing molybdenum content.
It is well known that nonisotropic volume changes in dilatometry were observed during the phase transformation in steel. In this study, a finite element (FE) model incorporating the transformation plasticity was adopted to describe the nonisotropic dilatometric behavior during the phase transformation in steel. An implicit numerical solution procedure to calculate the deformation during the dilatometric experiment was incorporated into the general purpose implicit FE program. The nonisotropic dilatometric behavior could be successfully reproduced by using the FE simulation considering the transformation plasticity. The transformation plasticity was caused by the small amount of stress that naturally developed in the specimen during the dilatometric experiment. In conventional low carbon steel, the stress in the specimen mainly forms due to the very small external force supplied to support it during the dilatometric experiment. As regards ultralow carbon steel, whose phase transformation occurs within an extraordinarily narrow temperature range, the inhomogeneous phase transformation due to the temperature deviation in the specimen was mainly responsible for the stress field in the specimen during the dilatometric experiment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.