We report our studies on root gravitropism indicating that reactive oxygen species (ROS) may function as a downstream component in auxin-mediated signal transduction. A transient increase in the intracellular concentration of ROS in the convex endodermis resulted from either gravistimulation or unilateral application of auxin to vertical roots. Root bending was also brought about by unilateral application of ROS to vertical roots pretreated with the auxin transport inhibitor N-1-naphthylphthalamic acid. Furthermore, the scavenging of ROS by antioxidants (N-acetylcysteine, ascorbic acid, and Trolox) inhibited root gravitropism. These results indicate that the generation of ROS plays a role in root gravitropism.Since Cholodny (1926) and Went (1926) discovered that directional auxin transport occurs upon gravistimulation, the mechanism of auxin transport is well established. According to the mechanism, the gravitropic stimulation induces asymmetric auxin movement, and the localized auxin in turn causes gravitropic curvature (Young et al., 1990; Dolan, 1998; Rosen et al., 1999). These results indicate that auxin is indeed essential for gravitropism. Several lines of evidence suggest that the second messengers, Ca 2ϩ and inositol 1,4,5-triphosphate (IP 3 ), are involved in root gravitropism (Lee et al., 1983; Perera et al., 1999). However, the relationship between auxin and second messengers is still unknown.Although reactive oxygen species (ROS) such as superoxide anions and H 2 O 2 are generally considered to be toxic byproducts of respiration, recent evidence suggests that the production of ROS might be an integral component of intracellular signaling (Krieger-Brauer and Kather, 1992; Finkel, 1998; Rhee et al., 2000). In mammalian cells, a variety of extracellular stimuli have been shown to induce a transient increase in the intracellular concentration of ROS, and specific inhibition of the ROS generation results in a complete blockage of stimulus-dependent signaling (Sundaresan et al., 1995; Bae et al., 1997). Also, several lines of evidence suggest that ROS serve as signaling molecules in plants. It has been shown that ROS mediate systemic signal networks for plant defense (Chen et al
Molybdenum disulfide (MoS2), a layered semiconducting material in transition metal dichalcogenides (TMDCs), as thin as a monolayer (consisting of a hexagonal plane of Mo atoms covalently bonded and sandwiched between two planes of S atoms, in a trigonal prismatic structure), has demonstrated unique properties and strong promises for emerging two-dimensional (2D) nanodevices. Here we report on the demonstration of movable and vibrating MoS2 nanodevices, where MoS2 diaphragms as thin as 6 nm (a stack of 9 monolayers) exhibit fundamental-mode nanomechanical resonances up to f0 ~ 60 MHz in the very high frequency (VHF) band, and frequency-quality (Q) factor products up to f0 × Q ~ 2 × 10(10)Hz, all at room temperature. The experimental results from many devices with a wide range of thicknesses and lateral sizes, in combination with theoretical analysis, quantitatively elucidate the elastic transition regimes in these ultrathin MoS2 nanomechanical resonators. We further delineate a roadmap for scaling MoS2 2D resonators and transducers toward microwave frequencies. This study also opens up possibilities for new classes of vibratory devices to exploit strain- and dynamics-engineered ultrathin semiconducting 2D crystals.
Abstract. This paper describes a framework for evaluating airway extraction algorithms in a standardized manner and establishing reference segmentations that can be used for future algorithm development. Because of the sheer difficulty of constructing a complete reference standard manually, we propose to construct a reference using results from the algorithms being compared, by splitting each airway tree segmentation result into individual branch segments that are subsequently visually inspected by trained observers. Using the so constructed reference, a total of seven performance measures covering different aspects of segmentation quality are computed. We evaluated 15 airway tree extraction algorithms from different research groups on a diverse set of 20 chest CT scans from subjects ranging from healthy volunteers to patients with severe lung disease, who were scanned at different sites, with several different CT scanner models, and using a variety of scanning protocols and reconstruction parameters.
The conversion of castasterone (CS) to brassinolide (BL), a Baeyer-Villiger oxidation, represents the final and rate-limiting step in the biosynthesis of BL in plants. Heterologously expressed Arabidopsis thaliana CYP85A2 in yeast mediated the conversion of CS to BL as well as the C-6 oxidation of brassinosteroids (BRs). This indicated that CYP85A2 is a bifunctional enzyme that possesses BR C-6 oxidase and BL synthase activity. CYP85A2 is thus a cytochrome P450 that mediates Baeyer-Villiger oxidation in plants. Biochemical, physiological, and molecular genetic analyses of Arabidopsis CYP85A2 loss-of-function and overexpression lines demonstrated that CS has to be a bioactive BR that controls the overall growth and development of Arabidopsis plants. Mutant studies also revealed that BL may not always be necessary for normal growth and development but that Arabidopsis plants acquire great benefit in terms of growth and development in the presence of BL
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.